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Abstract 

During major highway construction, when lanes or entire highway sections must be temporarily 
closed, traffic managers would like to inform motorists of alternative routes around the 
construction site well in advance of the project location. This study develops a traffic diversion 
model to propose an optimum alternate route to drivers during a construction activity. The 
models and algorithms developed in this study assess a potential diversion route in order to 
optimize network performance while considering the drivers’ behaviors in following the 
proposed alternate route during a closure.  A bi-level optimization model is proposed to 
minimize the total travel time in the entire network considering the link closure and a proposed 
alternate route for the travelers. A travelers’ route choice decision is modeled based on the user 
equilibrium traffic assignment, while a certain percentage of drivers are assumed to divert to the 
recommended alternate route. A set of simulation experiments is conducted using the Tarrant 
County network in north Texas. The results show the ability of the model to improve the overall 
network performance during hypothetical closure scenarios. 

Keywords: Traffic Diversion Model, Bi-Level Optimization, Alternate Route, Network 
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1. Introduction 

Traffic congestion has reached an alarming level in most urban areas. In 2014, road 

congestion caused a total delay of 6.9 billion hours for urban Americans, and the use of an extra 

3.1 billion gallons of fuel, which resulted in a total congestion cost of $160 billion (1). 

According to the Federal Highway Administration (FHWA) (2) about 50% of all highway 

congestion is caused by non-recurrent conditions. In addition, about 24% of non-recurrent 

congestion and 12% of overall congestion resulted from work zones on freeways, which led to an 

annual fuel loss of over $700 million (3). Moreover, in 2010, 87,606 crashes and 576 auto-

related fatalities occurred in work zones in the United States. These crashes included 26,282 

injury crashes and 60,448 property damage only crashes (4). Therefore, work zones have led to 

an unavoidable interruption in normal traffic flows and have resulted in traffic congestion, more 

vehicle emissions, and traffic safety problems (5). During a roadway construction project, when 

lanes or entire highway sections must be temporarily closed, traffic managers would prefer to 

inform motorists of alternative routes around the construction site well in advance of the project 

location. This will help reduce traffic demand through the construction site, enhance the safety of 

the workers and motorists, reduce traffic delays, and minimize fuel wastage and emissions. 

However, inappropriate traffic diversion plans will degrade the alternative routes and increase 

the travel time of the entire network (6).  

The purpose of designing route guidance and information systems is to improve system 

efficiency and assist drivers in making route decisions. Multiple approaches exist to propose 

alternate routes to road users; these examples include shortest path, which assigns users to the 

shortest path or path with the lowest travel time, User Equilibrium (UE), which assigns users to 

their individual shortest paths, and System Optimal (SO), which finds paths to minimize the total 

travel time of the system (7). The routing of traffic, which is a core component in traffic 

management, entails a well-known dilemma. Traffic managers seek to reach system optimal, 

which may discriminate against some users in favor of others, while the users want to use their 

shortest paths to minimize their costs, which may result in a lower system performance (8). Thus, 

inefficient or unfair traffic assignments cause users to travel on long paths or discourage them 

from accepting the route guidance, which could reduce the potential impact of the route guidance 

system (9). To solve this dilemma, some researchers implemented both user equilibrium and 
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system optimal models in their proposed road guidance systems (7, 10).  

In addition, the routes proposed by route guidance systems should be disseminated to 

travelers to enable them to make more informed route switching decisions (11). Advanced 

Traveler Information Systems (ATIS) have been widely used in recent years to assist drivers’ 

decisions and enable them to use the existing traffic road capacities more efficiently and improve 

the overall traffic flow in the congested network. Understanding these influences and driver 

behaviors remains important for improving route guidance systems. However, most traffic 

assignment models assume a rigid behavioral tendency for drivers and categorize them into 

classes such as UE, SO, or a combination of both (12). When a closure causes unexpected 

congestion, drivers may revise their travel choices. The drivers explore the new traffic conditions 

and adjust their travel patterns accordingly (13). They may either divert to the new routes based 

on their congestion perception, or use the information provided by ATIS. Therefore, considering 

driver behavior can improve the effectiveness of traffic assignment models on realistically 

representing traffic operations. This study develops a traffic diversion model that proposes an 

optimum alternate route to drivers during roadway construction. The developed model minimizes 

the total travel time in the entire network considering the link closure and the proposed alternate 

route for the travelers. While some travelers use the new alternate route to reach their 

destination, other travelers follow the UE traffic assignment in the network.  

1.1. Literature Review 

Although significant research efforts have been devoted to improving traffic conditions in 

work zone corridors, the literature remains unclear about the methods to find and evaluate the 

alternate routes or diversion plans. However, several studies have been conducted to improve 

network congestion caused by non-recurrent incidents. These studies examine the impacts of 

alternate routes on network performance, evaluate driver behavior, and investigate route 

guidance systems and traffic assignment methodologies used in traffic diversion schemes.  

Some studies evaluated drivers’ behaviors during unexpected congestion. For example, 

Khattak et al. examined short-term commuter response to unexpected congestion (14). Discrete 

choice models were used to model drivers’ diversion and return behavior to study factors that 

influence their decisions. The results showed the delay information received from radio traffic 
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reports, longer delays and longer travel times, and the number of alternate routes used in the past 

increase the probability of diversion. Moreover, Horowitz et al. determined the degree of 

alternative route selection from a rural freeway due to implementation of a traffic-responsive 

variable message signage system in a work zone (15). The message signs gave real-time 

estimated travel time to the end of the work zone without any information related to the 

alternative routes. The field study results indicated that a large percentage of drivers did not 

divert; a behavior that might be related to the lack of travel time information for alternative 

routes. Therefore, a traffic variable message sign system, which provides the travel times through 

the work zone and alternative routes, could encourage more drivers to divert. In addition, 

Khattak et al. assessed the effects of ATIS on travel behavior based on the alternatives and 

information provided to travelers (16). Their results indicated that travelers seem most likely to 

respond and overcome their behavioral inertia when faced with unexpected congestion with 

specific quantitative delay information. In another study, Kattan et al. investigated drivers’ 

behavioral response to real-time information that provided traffic updates and advisory detours 

(13). The results showed the drivers’ response to Variable Message Signs (VMS) can be useful 

for ATIS in response to network disruptions. 

Traffic diversion schemes represent one of the traffic network management strategies for 

recurrent and non-recurrent traffic congestion. Relevant studies investigated the effectiveness of 

traffic diversions on the performance of transportation networks. Bhavsar et al. developed a 

generic decision support system using support vector regression that predicts the traffic diversion 

impacts on a transportation network with a reasonable degree of accuracy (17). In another study, 

Hu et al. proposed a systematic framework to investigate the potential diversion points and 

evaluate the value of traffic information provided to drivers by VMSs (18). They applied 

Dynasmart-P to conduct relevant simulation experiments. Their framework was based on traffic 

assignment under the UE principle. Moreover, Aved et al. presented the Real-Time Route 

Diversion System (RTRDS) (19). RTRDS used the Dynasmart-P traffic simulator to generate 

optimal route diversions based on available real-time and historical traffic information with the 

goal of optimizing the overall system performance. In these two studies, the framework was 

based on traffic assignment under UE or SO and did not consider both at the same time.  
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In addition, some researchers implemented both UE and SO in their proposed road 

guidance systems. Jahn et al. proposed a Constrained System Optimum (CSO) approach that 

guarantees fairness comparable to that of the ordinary SO traffic assignment (7). They proposed 

a model, which implements a SO approach, but also considers the individual needs by adding 

constraints to ensure that users are assigned to acceptable routes. They used a column generation 

method to solve the CSO problem. In another study, Schulz and Moses (20) presented a 

theoretical analysis of the route guidance system proposed by Jahn et al. They analyzed the 

efficiency and fairness of the normal unfairness factor to ensure that routes suggested to users are 

not much longer than the shortest paths for the prevailing network condition. In another study, 

game theory was used to solve the conflict between UE and SO (21). They defined a concept of 

satisfactory degree to achieve an optimum traffic routing and proposed an integrated-equilibrium 

model based on double–objective optimization. However, the application of their models in a 

network with a disruption has not been discussed. A network with a closed link due to 

construction activities has an altered traffic pattern. Therefore, minimizing the total effects of the 

closure on the network performance is the purpose of this study.  

1.2. Contribution 

Unlike the aforementioned literature, the purpose of this study is to develop a traffic 

diversion model, which proposes an optimum alternate route to travelers during a roadway 

construction project that closes a sequence of links. The objective of the developed model is to 

minimize the total travel time in the entire network considering the link closure and the proposed 

alternate route for the travelers. Based on previous research (13), the authors assume that some 

travelers utilize the proposed alternate route to reach their respective destinations, while others 

follow UE traffic assignment in the network. The models and algorithms developed in this study 

assess the potential diversion route. The recommended route is the first to optimize network 

performance while considering drivers’ behaviors in selecting alternate routes during a closure. 

This system is of interest to traffic network managers and construction companies to help them 

divert traffic from the disrupted area and improve throughput through the congested region.  
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2. Methodology  

2.1. Definition of Variables and Notation 

Data sets, parameters, and variables used for this model are given as follows.  

𝒢 is a full traffic network 

𝒜 is a set of links in the network 𝒢 

𝒩 is a set of nodes in the network 𝒢 

𝒵 is a set of zones in the network 𝒢 

ℐ is a set of origin nodes where  ℐ ⊂ 𝒵 

𝒥 is a set of destination nodes where  𝒥 ⊂ 𝒵 

𝑎 is a link in the network, 𝑎 𝜖 𝒜 

𝑛 is a node in the network, 𝑛 𝜖 𝒩 

𝒾 is an origin node, 𝒾 𝜖 ℐ 

𝒿 is a destination node, 𝒿 𝜖𝒥 

𝐾𝒾𝒿 is a set of routes between origin-destination pair (𝒾, 𝒿) 

𝑘 is a route in the network, 𝑘 𝜖 𝐾𝒾𝒿 

𝑙௔ is the length of link 𝑎 

𝑐 is a closure identification index  

𝐴௖ is a sequence of closed links 

𝑎௖ is a closed link, 𝑎௖ 𝜖 𝐴௖ 

𝐺 is a subnetwork around the closed links 𝐴௖ with disrupted links 

𝐴 is a set of links in the subnetwork 𝐺, 𝐴 ⊂ 𝒜 

𝑁 is a set of nodes in the subnetwork 𝐺, 𝑁 ⊂ 𝒩 

𝑍 is a set of zones in the subnetwork 𝐺 

𝐼  is a set of origin nodes in the subnetwork 𝐺 and 𝑖 is an origin node where  𝐼 ⊂ 𝑍 

𝐽  is a set of destination nodes in the subnetwork 𝐺 and 𝑗 is a destination node where  𝐽 ⊂ 𝑍 

𝑥௔ is the number of travelers on the link 𝑎 in the full network 𝒢 

𝑥௔
ீ  is the number of travelers on the link 𝑎 in the subnetwork 𝐺 

𝑡௔ is travel time on the link 𝑎 in the full network 𝒢 

𝑡௔
ீ  is travel time on the link 𝑎 in the subnetwork 𝐺 
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𝑓𝒾𝒿 is the number of travelers between OD pair (𝒾, 𝒿) 

𝑓𝒾𝒿௞ is the number of travelers on route 𝑘 connecting OD pair (𝒾, 𝒿) 

𝑓መ𝒾𝒿௞ is the number of travelers on route 𝑘 connecting OD pair (𝒾, 𝒿) in a UE solution with no 

closed link 

𝑡𝒾𝒿௞൫𝑓𝒾𝒿௞൯ is the travel time on route 𝑘 between OD pair (𝒾, 𝒿)  

𝑓መ௜௝ is the number of travelers between OD pair (𝑖, 𝑗) in the subnetwork 𝐺 in a UE solution with 

no closed link 

𝑓௜௝௞ is the number of travelers on route 𝑘 connecting OD pair (𝑖, 𝑗) in the subnetwork 𝐺 

𝑓መ௜௝௞ is the number of travelers on route 𝑘 connecting OD pair (𝑖, 𝑗) in the subnetwork 𝐺 in a UE 

solution with no closed link 

𝑡௜௝௞൫𝑓௜௝௞൯ is the travel time on route 𝑘 between OD pair 𝑖𝑗 in the subnetwork 𝐺 

𝐼௖ is a set of origin nodes for the closed links 𝐴௖ in the subnetwork 𝐺 where  𝐼௖ ∈ 𝐼 

𝐽௖ is a set of destination nodes for the closed links 𝐴௖ in the subnetwork 𝐺 where  𝐽௖ ∈  𝐽 

𝑁௦ is a set of nodes upstream of the closed links (start nodes) 

𝑁௘ is a set of nodes downstream of the closed links (end nodes) 

𝑛௦ is a start node upstream of the closed link where 𝑛௦ ∈ 𝑁௦ 

𝑛௘ is an end node downstream of the closed link where 𝑛௘ ∈ 𝑁௘  

𝑃௦௘ is the set of available paths between a start node 𝑛௦ and an end node 𝑛௘ 

𝑝 is an available path between a start node 𝑛௦ and an end node 𝑛௘ where 𝑝 ∈ 𝑃௦௘ 

𝐴௣ is a set of links on the path 𝑝 

𝐾௜௝
௣ is a set of paths between origin 𝑖 and destination 𝑗, which contains alternate path 𝑝    

𝑃௦௘
ℓ  is a set of available alternate paths in iteration ℓ of the proposed algrothm, 𝑃௦௘

ℓ ⊆ 𝑃௦௘ 

𝑝ℓ is the alternate path in iteration ℓ of the algorithm 

𝛼 is a percentage of drivers that follow the recommended alternate path 

𝑦௣ is a binary variable (0,1) for whether path 𝑝 is selected as a detour path 

𝜎𝒾𝒿௞
௜௝  is the path flow indicator for path flow 𝑓𝒾𝒿௞ passing, or traveling into or from the 

subnetwork (defined in section 2.3.1) 
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𝛿௜௝௞
௔೎  is the path flow indicator which is one if the closed link 𝑎௖ is on the path 𝑘 between 𝑖 and 𝑗 

and zero otherwise 

2.2. Problem Definition  

Given 𝒢(𝒩, 𝒜) is a traffic network where 𝒜 is a set of links and 𝒩 is a set of nodes. A 

node can represent an origin node (𝒾), a destination node (𝒿), and/or a junction of links (𝑛). A 

network with multiple origins 𝒾 𝜖 ℐ and destinations 𝒿 𝜖 𝒥 is considered. A set of OD vehicle 

trips, expressed as the number of travelers 𝑓𝒾𝒿 going from origin 𝒾, to destination 𝒿 is given. 

Thus, 𝑓𝒾𝒿௞ is the number of travelers on route 𝑘 between origin 𝒾 and destination 𝒿, and 𝑡𝒾𝒿௞ is 

the travel time for traveling between (𝒾, 𝒿) along route 𝑘, which is a function of 𝑓𝒾𝒿௞. 

2.3. Subnetwork  

When a closure 𝑐 occurs on a link 𝑎௖ or a set of links 𝐴௖ due to construction activities, it 

results in either a capacity reduction or a full closure along that link. The closure or reduction in 

the link capacity could cause significant congestion upstream of the closure, and the traffic 

congestion could extend over a large area. To reduce the complexity of the model and to ensure 

that the results are obtained in a timely manner, a subnetwork needs to be defined around the 

closure, which covers the significantly affected areas (22). Therefore, a linear regression model, 

which is a function of the closed link’s demand and network topology can be used to estimate the 

radius of the affected area and define the subnetwork (23).   

2.3.1. Subnetwork OD Demand Estimation 

As a subset of the full network, the subnetwork zonal structure is defined as a set of 

origin zones with origin nodes 𝐼 and a set of destination zones with destination nodes 𝐽. 

Therefore, the OD trips in the subnetwork are the number of vehicle trips traveling from origin 

node 𝑖 to destination node 𝑗, ∀𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽. Inspired by the work of Zhou et al. (24), to estimate 

the origin-destination matrix for the subnetwork, the first step is generating path flow patterns in 

the full network ( 𝑓መ𝒾𝒿௞). In this study, the user equilibrium model is used to generate these 

patterns. Once the subnetwork is defined, and its boundary is specified, all origin and destination 

nodes that have traffic passing through this region are named as external nodes, while those lying 
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within this region are labeled internal nodes. All of the OD pairs in the network are categorized 

into four groups: Internal-Internal (I-I), External-External (E-E), Internal-External (I-E), and 

External-Internal (E-I), as shown in Figure 1. 

 

 

 

 

 

Figure 1: Four Types of OD Pairs with Respect to Subnetwork (24) 

For I-I OD pairs, the vehicle trips from 𝑖 to 𝑗 (𝑓௜௝) are assumed to be the same as the full 

network OD matrix (set 𝑓መ௜௝ = 𝑓መ𝒾𝒿 for I-I OD pairs). For E-E, E-I and I-E pairs, the following 

equation is used to estimate the number of vehicle trips between each OD pair: 

𝑓መ௜௝ = ෍ 𝑓መ௜௝௞

௞∈௄೔ೕ

= ෍ 𝑓መ𝒾𝒿௞𝜎𝒾𝒿௞
௜௝

𝒾∈ℐ,𝒿∈𝒥,௞∈௄೔ೕ

 , ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽                (1) 

where 𝜎𝒾𝒿௞
௜௝  is the path flow indicator for path flow 𝑓መ𝒾𝒿௞ passing, or traveling into or from the 

subnetwork. Specifically, 𝜎𝒾𝒿௞
௜௝  is 1 if node 𝑖 is in the first entering zone into the subnetwork and 

node 𝑗 is in the last exit zone from the subnetwork, or node 𝑖 is in the first entering zone into the 

subnetwork and node 𝑗 is in the subnetwork, or node 𝑖 is in the subnetwork and node 𝑗 is in the 

last exit zone form the subnetwork; otherwise 𝜎𝒾𝒿௞
௜௝

= 0. It should be noted that the paths between 

the E-E pairs can enter and exit the subnetwork multiple times. In this study, when more than 

half of a path is in the subnetwork, it is considered as a path passing through the subnetwork. The 

algorithmic steps to solve Equation (1) are described as follows;  

- Initialize 𝑓መ௜௝ = 𝑓መ𝒾𝒿 for ∀𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝐽, 

- For each origin 𝒾 ∈ ℐ, each destination 𝒿 ∈ 𝒥, and each path 𝑘 ∈ 𝐾𝒾𝒿, scan the path node 

sequence from 𝒾 to 𝒿 on the full network,  

- Identify the first entering zone and the last exit zone in the subnetwork to identify origin 

node 𝑖 and destination node 𝑗 for all E-E OD pairs, identify the first entering zone in the 

Subnetwork 

Full network 

I-I 

E-I 
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subnetwork and origin node 𝑖 for all E-I OD pairs, and identify the last exit zone in the 

subnetwork and destination node 𝑗 for all I-E OD pairs, 

- If path 𝑘 ∈ 𝐾𝒾𝒿 is traveling in the subnetwork and origin 𝑖 and destination 𝑗 can be 

found for the path, then  𝑓መ௜௝ ← 𝑓መ௜௝ + 𝑓መ𝒾𝒿௞. 

Therefore,  𝑓መ௜௝, which is the total number of vehicle trips traveling from origin node 𝑖 to 

destination node 𝑗 in the subnetwork 𝐺, is estimated. 

2.3.2. Closed Link OD pairs 

Origin and destination nodes for the traffic on the closed links are obtained as follows: 

𝐼௖ ×  𝐽௖ = ቄ (𝑖, 𝑗) ∈ 𝐼 × 𝐽 ቚ ∑ 𝛿௜௝௞
௔೎

௔೎∈஺೎,௞∈௄೔ೕ
 ≥ 1ቅ               (2) 

where 𝛿௜௝௞
௔೎  is the path flow indicator which is one if link 𝑎௖ is on the path 𝑘 between 𝑖 and 𝑗 and 

zero otherwise. 

2.4. Model Formulation 

The goal of this model is to provide a single alternate route around the construction site to 

divert traffic and mitigate traffic congestion. The problem aims at determining the most efficient 

alternate route that minimizes the total impact of the closed links on network performance. The 

total travel time of the affected area (subnetwork 𝐺) is considered to measure the impact of the 

closed links on the system. Because construction usually occurs over a scheduled period of time, 

a travelers’ route choice decision is modeled based on the UE traffic assignment. While user 

equilibrium satisfies the drivers’ goals, it does not necessarily minimize the total travel time of 

the system (7). The study assumes that traffic information such as an alternate route and its travel 

time is provided for drivers upstream of the closure and disseminated via ATIS. In addition, a 

certain percentage of drivers (𝛼) are assumed to divert to the recommended alternate route, while 

others are assumed to divert based on the UE assignment. With the use of the modern 

technologies such as GPS devices, it can be assumed that drivers have perfect information of the 

roads, which is one of the UE assumptions. Many studies that have been conducted on drivers’ 

behavioral response to the traveler information systems are used to estimate the percentage of 
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drivers (𝛼) who are diverting (12-17). Moreover, the number of travelers 𝑓መ௜௝  going from origin 𝑖, 

to destination 𝑗 in the subnetwork 𝐺 is estimated in section 2.3.1. Finally, a bi-level model is 

proposed to identify the optimum alternate routes. The following mathematical model describes 

this problem. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑇𝐺 = ෍ 𝑥𝑎
𝐺 × 𝑡௔

ீ(𝑥𝑎
𝐺)

௔∈𝐴

                                                                                                        (3𝑎) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       

෍ 𝑦௣

௣∈௉ೞ೐

= 1                                                                                                                 (3𝑏) 

𝑦௣ ∈ {0, 1}                                                                                                   ∀𝑝 ∈ 𝑃௦௘  (3𝑐) 

             𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       ෍ න 𝑡௔(𝑥௔)𝑑𝑥
௫ೌ

ಸ

଴௔∈஺

                                                                               (3𝑑) 

             𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:       

෍ 𝑓௜௝௞

௞ ∈௄೔ೕ

= 𝑓መ௜௝                                                                                  ∀𝑖 𝜖 𝐼,   ∀ 𝑗 𝜖 𝐽 (3𝑒) 

𝑥௔
ீ  = ෍ ෍ ෍ 𝛿௜௝௞

௔

௞ఢ ௄೔ೕ௝ఢ ௃௜ఢ ூ

𝑓௜௝௞                                                                      ∀𝑎 ∈ 𝐴 (3𝑓) 

𝑓௜௝௞ ≥ 𝛼 𝑓መ௜௝௞ 𝑦௣                                           ∀𝑖 𝜖 𝐼௖ ,   ∀ 𝑗 𝜖 𝐽௖ , ∀𝑝 𝜖 𝑃௦௘ , ∀𝑘 𝜖 𝐾௜௝
௣(3𝑔) 

𝑓௜௝௞ ≥ 0                                                                             ∀𝑖 𝜖 𝐼,   ∀ 𝑗 𝜖 𝐽, ∀𝑘 𝜖 𝐾௜௝ (3ℎ) 

𝑥௔
ீ ≥ 0                                                                                                 ∀𝑎 ∈ 𝐴 − 𝐴௖ (3𝑖) 

𝑥௔
ீ = 0                                                                                                          ∀𝑎 ∈ 𝐴௖ (3𝑗) 

This model is formulated as a nonlinear mathematical program (NLP). The objective 

function minimizes the total travel time of the affected network (subnetwork with closed links), 

which is the upper-level problem of the bi-level optimization framework. Constraint (3b) ensures 

that a path 𝑝 ∈ 𝑃௦௘ between a start node 𝑠 and an end node 𝑒, upstream and downstream of the 

closed link, is served as the alternate path and only one path is served. Constraint (3c) shows the 

binary restrictions of the variable 𝑦௣. Constraint (3d) is the objective function of the lower level 

problem in the bi-level optimization framework. The lower level applies user equilibrium traffic 

assignment for travelers, who do not divert to the alternate path. Constraint (3e) represents the 

conservation of the OD demand over all the paths for each OD pair. They ensure that the sum of 

the travelers 𝑓௜௝௞ over all paths connecting OD pair in the subnetwork is equal to total number of 
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travelers between these OD pairs. Constraint (3f) estimates the traffic volume on each link in the 

network, and 𝛿௜௝௞ 
௔ is either one or zero with the value being one when link 𝑎 is on path 𝑘 between 

OD pair (𝑖, 𝑗), and zero otherwise. Constraint (3g) shows that total travelers between the closed 

links OD pair (𝑖, 𝑗) should be at least as large as the number of travelers who divert to alternate 

routes. This constraint applies to the paths between closed link OD pair of which alternate route 

is part. Constraints (3h) and (3i) ensure that the variables are non-negative. Constraint (3j) 

ensures that the closed links’ volumes are zero. 

2.5. Solution Algorithms 

This section discusses the algorithmic steps to solve the bi-level optimization model 

expressed in the previous section. 

Step 1. Pre-algorithmic step 

Apply the User Equilibrium (UE) model to load the OD demand onto the network in the 

normal condition (network without any closed link) to generate the traffic pattern (𝑓መ𝒾𝒿௞) in the 

network between each OD pair (𝒾, 𝒿) and estimate links volume (𝑥௔). Identify closed links 𝐴௖ 

and define the subnetwork 𝐺 around the closure based on the closed link demand and network 

topology (discussed in section 2.3) and determine OD demand for the subnetwork (𝑓መ௜௝). 

Close the specified link and apply the UE model to the subnetwork (affected subnetwork, 

which is a subnetwork with a closed link) to generate the traffic pattern (𝑓௜௝௞) on the affected 

subnetwork and estimate the links volume (𝑥௔
ீ). Define a set of start (𝑛௦ 𝜖 𝑁௦) and end (𝑛௘  𝜖 𝑁௘) 

nodes upstream and downstream of the closed link in the subnetwork. Find all possible paths 

𝑝 between these nodes (𝑝 𝜖 𝑃௦௘) and identify all links on each path (𝐴௣). 

Set ℓ = 0, the initial set of available paths 𝑃௦௘
଴ = 𝑃௦௘, and the best alternate path 𝑝∗ = ∅. 

Step 2. Path Selection  

Compare the link volumes on the normal subnetwork (without any closed link) to the 

affected subnetwork and identify a path that contains links with most changes (volume 

changes per length) among all available paths ( 𝑃௦௘
௜ ) as the alternate path (𝑝௜) based on the 

equation (4). 
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𝑝௜ ∈ argmax
௣∈௉ೞ೐

ℓ
ቐ ෍ (𝑥௔

ீ − 𝑥௔)

௔∈஺೛

/( ෍ 𝑙௔

௔∈஺೛

 )ቑ                         (4) 

Step 3. Alternate Route Evaluation 

1. Identify 𝑝ℓ as alternate route and set 𝑦௣ℓ
 =1. 

2. Solve the UE problem given by equation (3d) to (3j) in the model formulation, which 

results in (𝑥௔
ீ௣ℓ) and (𝑡௔

ீ௣ℓ). 

3. Estimate the total travel time of the updated subnetwork considering the link closure and 

the proposed alternate route:  

𝑇 (𝑝ℓ) =  ෍ 𝑥௔
ீ௣ℓ  × 𝑡௔

ீ௣ℓ

௔∈஺

                                    (5) 

Step 4. Best Known Solution 

1. If  𝑝∗ = ∅ or 𝑇 (𝑝ℓ) < 𝑇 (𝑝∗), set 𝑝∗= 𝑝ℓ as the optimum alternate route between the 

evaluated routes. 

2. Remove 𝑝ℓ from the set of paths and set 𝑃௦௘
ℓାଵ =  𝑃௦௘

ℓ −  {𝑝ℓ}. 

3. Set ℓ = ℓ + 1 .  

 

Step 5. Stop Criteria 

If  𝑃௦௘
ℓ  is empty or CPU time is more than ∆, stop and return 𝑝∗as the optimum alternate 

route, otherwise go to step 2. 

3. Experiments, Results, and Analysis  

Experiments are conducted to examine the performance of the traffic diversion model 

described above. In these experiments, the traffic diversion model is applied to the Tarrant 

County network in north Texas. The network database for Tarrant County is maintained by the 

North Central Texas Council of Governments (NCTCOG). As illustrated in Figure 2, the 

network consists of about 7,500 nodes and 20,000 links, which contain several freeways and 

arterials that extend over multiple cities. A demand pattern that indicates a typical evening peak 
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period is considered. The model is used to recommend an alternate route in closure scenarios due 

to construction activities on the freeway facilities. Under normal conditions (without any closure 

in the network), travelers are assumed to follow their historic user equilibrium routes. In the case 

of freeway construction, when a freeway section must be temporarily closed, variable message 

signs are assumed to show the selected alternate route along the freeway before the closure. The 

study assumes that a certain percentage of travelers follow the recommended route and others 

decide to divert based on their congestion perception. To estimate this percentage, many studies 

have been conducted on drivers’ behavioral response to traveler information systems (12-17). 

The drivers’ response is a function of various factors such as trip characteristics, the number of 

available alternate routes, delay information and duration (14). Based on the literature (13), this 

study assumes that 40% of drivers follow the suggested alternate route and the other 60% follow 

UE traffic assignment routes. To present a non-recurrent congestion scenario, a hypothetical 

incident is assumed to close the entire freeway section. 

 
Figure 2: Tarrant County Network 

The first set of experiments examines the effect of the subnetwork size on the traffic 

diversion model. A link with a volume of 4800 vehicles per hour on state highway 121 is closed 
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and five subnetworks with different sizes are considered around the closure as illustrated in 

Figure 3. As shown in the figure, the subnetworks vary in radii, which are estimated as described 

in section 2.3. These models consider the distance between the closed link and the farthest link 

with 5%, 15%, 25%, 30%, and 40% increases in travel time, which result in radii of 5, 4, 3.5, 3, 

and 2.5 miles, respectively. For each experiment, the percentage savings in the total travel time is 

estimated by comparing the total network travel time before (the do-nothing scenario) and after 

deploying the traffic diversion model. To create a standard comparison between the results, a 

subnetwork with a radius of five miles is considered as a test network. The alternate routes, 

which are proposed from each experiment, are considered for traffic assignment in the test 

network. Finally, the total network travel time is estimated for each experiment and compared to 

the do-nothing scenario. Figure 3 illustrates the travel time savings and CPU execution times for 

the five subnetworks. The results show that bigger subnetworks result in more efficient alternate 

routes as indicated by an increase in the total travel time savings.  

 

 

 

 

 

 

 

Figure 3: The Effect of Subnetwork Size 
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alternate path with travel time savings close to the optimum alternate path can be obtained in less 

than fifteen minutes for the subnetwork with a five miles radius. Therefore, a proper sorting 

method along with a time limit can result in an alternate path with travel time savings close to the 

optimum alternate path in a short time (Section 3.1). 

 

Figure 4: The Execution Time and Travel Time Savings of the Best Known Solutions for 5-Mile 
Radius Subnetwork 

 The second set of experiments examines the performance of the traffic diversion model 

considering the closure occurs on links with different levels of traffic volume. For this purpose, 

the authors conduct three experiments for the low, medium and high levels of traffic volume. In 

three different experiments, links with volumes of 2300, 5400, and 8500 vehicles per hour are 

considered to be closed for this purpose. Figure 5 presents the results of these experiments. As 

shown in Figure 5, when comparing to the do-nothing scenario in which the traffic diversion 

model is not applied, the best network performance is achieved in the case when a closure occurs 

on a link with a high level of traffic volume (6.3% travel time savings). The results show the 

importance of applying the traffic diversion model around a construction site to improve network 

performance, especially when closure occurs on links with high traffic volumes. 
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Figure 5: The Effect of Link Traffic Volume 

The third set of experiments assesses the accuracy of the model by limiting the 

availability of links utilized in the alternate routes. For this purpose, only high-level links are 

assumed to be available for alternate paths in one of the experiments, and the two experiments 

are compared. In the first experiment, alternate paths can be selected from any available link in 

the network. For the second experiment, alternate paths can be only selected from freeways and 

major arterials. In each experiment, the thirteen best alternate paths are considered, and the total 

travel time of the network is estimated and compared to the do-nothing scenario. As shown in 

Figure 6, limiting the routes by using only freeways and arterials has a small effect on the total 

travel time of the network. Therefore, considering freeways and major arterials for alternate 

paths could be a suitable approach to reduce computation time as it does not have a substantial 

effect (an average of 1.92% differences between the results) on the network performance and 

also avoids diverting traffic to minor arterials.  
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Figure 6: The Effect of the Links Availableility in Selecting Alternate Routes 

3.1. Experiments related to the Path Selection Methods  

Path selection (step 2) represents an important part of the algorithm explained in section 

2.5. The method in step 2 highly affects the execution time spent to find a new best known 

solution in step 4. If alternate paths that result in a better performance for the entire subnetwork 

are located at the top of the alternate paths list in the sorting method, the best solution would 

most likely be reached in a short time. Therefore, after a specific time (∆) the algorithms can be 

stopped without evaluating all of the paths and with confidence that the result is nearly optimal. 

Three sorting methods are evaluated in this study (two other methods in addition to the 

proposed method in step 2). These methods are named as length, volume changes, and volume 

changes per length. In these methods, alternate paths are sorted based on the following criteria: 

1- Length: Paths length from the shortest path to the longest one (∑ 𝑙௔௔∈஺೛
). 

2- Volume changes: Total difference between the sum of the link volumes in the normal 

subnetwork and the affected subnetwork from the highest changes to the lowest 

changes (∑ (𝑥௔
ீ − 𝑥௔)௔∈஺೛

). 

3- Volume changes per Length: Total differences between the sum of the link volumes 

on the normal subnetwork and the affected subnetwork divided by the length of that 

path from the highest amount to the lowest amount (∑ (𝑥௔
ீ − 𝑥௔)/ ( ∑ 𝑙௔௔∈஺೛௔∈஺೛

)). 
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A set of experiments compares these three sorting methods; the experiments consider 

twelve links with different characteristics as closed links. The algorithms mentioned in section 

2.5 are applied three times for each of these links, and each time, one of the above three sorting 

methods are used (step 2) to find the best alternate path. The execution time to find a best known 

solution is estimated (when there is an improvement in the travel time savings or any updates in 

step 4) for each of these sorting methods. The results are shown on the figures (a sample figure is 

shown in Figure 7 for link 10), and the area under each curve related to each sorting method is 

estimated and compared.  

 

Figure 7: The Execution Time and Travel Time Savings of the Best Known Solutions for Three 
Sorting Methods 

 

 

Figure 8: Illustration of Midpoint Rule Method for Calculating Area under the Curve 
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The midpoint rule method is used to calculate the Area Under the Curve (AUC) (25). To 

calculate the 𝐴𝑈𝐶, the curve is divided into a series of rectangles (Figure 8) and the area of each 

rectangle is summed to estimate the total area under the curve. 𝐴𝑈𝐶 is calculated as: 

                         𝐴𝑈𝐶 =  ෍ ൬
𝑇𝑇𝑆ℓ + 𝑇𝑇𝑆ℓାଵ

2
൰

௡ିଵ

ℓୀ଴

( 𝑡ℓାଵ − 𝑡ℓ)                                           (6) 

where 𝑛 is the total number of best known solutions, 𝑇𝑇𝑆ℓ is the percentage of travel time 

savings at the ℓ௧௛ best known solution, and 𝑡ℓ is the CPU time at which the ℓ௧௛ best known 

solution is found. Since the unit for 𝑇𝑇𝑆 is percentage (%), and the unit for 𝑡 is minutes, the unit 

of the 𝐴𝑈𝐶 is percentage-minutes (%-min). The first term in the equation is the height of the 

rectangle (estimated as the midpoint between 𝑇𝑇𝑆ℓ and 𝑇𝑇𝑆ℓାଵ), and the second term is the 

width of the rectangle. Table 1 shows the calculated 𝐴𝑈𝐶 for the sorting methods. 

Table 1: AUC for Three Sorting Methods 

Link 

AUC (%-min) 

Length Volume 
Changes 

Volume 
Changes/ 

Length  

1 1.837 1.764 1.848 
2 3.995 3.587 3.995 
3 4.340 3.218 4.210 
4 1.634 1.532 1.631 
5 5.243 7.114 7.271 
6 22.124 21.230 22.281 
7 4.075 4.010 4.075 
8 0.124 0.117 0.126 
9 5.283 4.912 5.250 

10 0.074 0.070 0.078 
11 0.014 0.014 0.014 
12 24.642 24.123 24.097 

Average  6.115 5.974 6.239 
 

The highlighted cells show the higher amount of 𝐴𝑈𝐶 among the three methods and 

indicate the preferred method for each link. As shown in Table 1, the third method (Volume 

changes/Length) has the highest amount of 𝐴𝑈𝐶 among the three methods for six links, which 
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indicates that the third method is the preferred method for half of the links. In addition, the 

average 𝐴𝑈𝐶 in the third method is slightly better than other methods on average. Therefore, this 

method is selected to use in step 2 of the algorithm.  

4.  Conclusions  

This paper is the first to present a traffic diversion model to divert travelers to an 

optimum alternate route around a construction site. The model estimates the current network 

conditions with a closure in the network, compares the current conditions to the normal 

conditions, and proposes an optimum alternate route to improve the overall network 

performance. The travelers’ route choice behavior is also considered in this model. A certain 

percentage of travelers are assumed to divert to the proposed alternate route, and others follow 

alternate routes based on UE traffic assignment. A set of experiments is conducted using the 

Tarrant County network in north Texas. The results show the ability of the model to improve the 

overall network performance during a hypothetical closure scenario.  

Moreover, the results show that bigger subnetworks result in more efficient alternate 

routes, the highest network performance improvement could be achieved when a link with a high 

level of traffic volume is closed, and considering freeways and major arterials for alternate paths 

could be a suitable approach to reduce computation time in the algorithm. Furthermore, the use 

of the “Volume changes per Length” method to sort the alternate paths reduces the execution 

time to find a best known solution in the algorithms. 

Moreover, construction is usually scheduled and publicized to drivers. Thus, UE traffic 

assignment model which is well establish in the literature (26-27) is developed for this research. 

Nonetheless, traffic networks are highly dynamic with numerous sources of uncertainties on the 

demand and supply sides. Determining traffic flow patterns and deploying efficient traffic 

management schemes could be challenging, especially if no adequate historical traffic data is 

available. A major extension of the current study is to model the traffic network at high 

reliability by capturing the temporal and spatial demand-supply interactions and associated 

congestion. This requires utilizing Dynamic Traffic Assignment (DTA), which models the 

interaction between travelers' behavior and congestion dynamics. The proposed traffic diversion 

methodology would adopt a DTA model, which is relatively consistent with travelers' behavior 
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and incorporates the tempo-spatial changes in the demand and supply in the traffic network. 

Using DTA to evaluate alternate paths as described would likely be particularly appropriate for 

unscheduled and unpublicized closures, such as those from major accidents. Moreover, the 

traffic diversion model presented in this study is capable of identifying multiple alternate routes. 

The model evaluates and sorts all the available alternate paths, and can represent the paths in 

order from the best to the worst. However, in the experiments only a single alternate route is 

considered to divert drivers, which follow the signs to the detour path. In addition, partial closure 

instead of the whole closure is feasible in the presented model. Therefore, identifying multiple 

alternate routes and addressing partial closure represent another next step for this research. 
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