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Abstract 

High ground-level ozone concentrations constitute a major problem in the United States. In this study, we 

considered the case of Atlanta, Georgia State, where the control of nitrogen oxides (NOx) emission is 

necessary to reduce ozone pollution. Stochastic dynamic programming (SDP) was used to examine the 

existing NOx emission control strategies with respect to time stage and location. A design and analysis of 

a computer experiments (DACE)-based SDP method was used to obtain a computationally tractable 

solution involving both metamodeling to estimate the state transitions, and value function approximation 

to generate a solution policy. However, the state variables of the considered ozone pollution control 

problem included spatially and temporally correlated observations. Hence, the state transition models 

constructed in the presence of multicollinearity might be unstable, with resultant effects on the SDP 

control policy. This necessitated the consideration of multicollinearity in the state space. Three types of 

state transition metamodels were developed to demonstrate the potential drawbacks of ignoring 

multicollinearity and the SDP policy improvement that can be achieved by addressing it in the state space. 

 

Subject classifications: environment: pollution; dynamic programming/optimal control: Markov-infinite 

state; statistics: correlation. 

1. Introduction 

Ozone exists naturally in the atmosphere. In the stratosphere, high concentrations of ozone protect the 

earth’s surface from harmful ultraviolet radiation emitted by the sun. Much lower ozone concentrations 

are found in the troposphere, mainly because of the occurrence of photochemical reactions and 

stratospheric intrusions. However, in the troposphere, especially in metropolitan areas characterized by 

substantial anthropogenic emissions, photochemical reactions involving nitrogen oxides (NOx) and 

volatile organic compounds (VOCs) significantly increase the ground-level ozone concentration. This 

high ozone level and other air pollutants are harmful to both the natural ecosystem and humans (U.S. 



 

 

Environmental Protection Agency 2018). There is thus the need for regulations for controlling the 

emission of NOx and/or VOCs to reduce ground-level ozone concentration.  

Dynamic programming (DP) (Bellman 1957), which is a mathematical programming method, has 

been used to solve multistage optimization problems in engineering, economics, social science, and many 

other fields (e.g., Bertsekas 2005; Adda and Cooper 2003; Burkhauser et al. 2004). The objective of the 

present study was to develop optimal strategies for controlling ground-level ozone pollution. We focused 

on finite-horizon stochastic DP (SDP), in which the objective is to sequentially minimize the expected 

cost over several time stages and under prescribed constraints. However, the ozone pollution problem is 

high-dimensional and the state and decision variables of it are continuous, whereas most current 

SDP/reinforcement learning (RL) algorithms still suffer the so-called “curse of dimensionality.” Although 

a finite-grid method could be used to discretize a state space and then interpolate the optimal value 

function between grid points (Johnson et al. 1993), in a high-dimensional problem, a straightforward grid 

of points corresponding to a full factorial experimental design would grow exponentially with increasing 

number of state variables. Recognizing this issue, Chen et al. (1999) used a design of experiments (DoE) 

method to implement a more efficient state space discretization process. Efficient experimental designs 

have also been applied to continuous-state problems, such as orthogonal arrays (OAs), Latin hypercubes, 

and low-discrepancy sequences (Chen et al. 1999, Chen 1999, Cervellera et al. 2006, Cervellera et al. 

2007, Yang et al. 2009, Fan et al. 2013). This approach is generally referred to as the design and analysis 

of computer experiments (DACE) (Sacks et al. 1989, Chen et al. 2006). 

Yang et al. (2009) was the first to use DACE-based SDP to study emission control strategies with 

regard to the ozone pollution problem in Atlanta, Georgia State, United States of America. Their work 

was based on the DACE-based state transition modeling process developed by Yang et al. (2007). 

However, they ignored multicollinearity in the state space. To our knowledge, there has been no SDP or 

related RL study that considered multicollinearity in continuous state spaces. The state variables of the 

ozone pollution problem include spatially and temporally correlated observations, because the NOx and/or 

VOCs emission locations are close to each other and the system dynamics late in the day depend on the 



 

 

system states earlier in the day. Ariyajunya et al. (2017) were the first to examine multicollinearity issues 

in SDP state spaces, when they investigated the use of data mining techniques such as feature extraction 

and feature selection to mitigate multicollinearity in state transition metamodeling. They demonstrated the 

consequences of ignoring multicollinearity in the case of Atlanta, including the variance inflation factors 

(VIFs) reaching 56, where VIF > 10 is considered a serious problem in statistical modeling, because high 

multicollinearity is known to lead to unstable high variance parameter estimates (Kutner et al. 2005).  

In the present study, we developed three types of state transition metamodels and numerically solved 

the corresponding SDP problems. The first type of state transition metamodels ignores the inherent 

multicollinearity and can be used to develop high-VIF metamodels. It is likely to produce poor results for 

SDP problems with unchecked high multicollinearity. The second type of state transition metamodels 

addresses multicollinearity using classical regression analysis techniques to yield low VIFs. Although it is 

simpler to implement this type of metamodels in SDP, it is not always possible to obtain them. The third 

type of state transition metamodels is used to orthogonalize the state space, guaranteeing zero 

multicollinearity. However, the associated Bellman equation and corresponding backward SDP solution 

algorithm must be modified to utilize the orthogonalized state space. All three types of state transition 

metamodels were applied to the Atlanta ozone pollution SDP problem and their results were compared. 

The major contributions of the study are as follows: 

(a) Restructuring the Bellman equation and corresponding solution algorithm in terms of the latent 

variables described by Ariyajunya et al. (2017).  

(b) Development of three types of state transition metamodels and applying them to the SDP process. 

(c) Simulation of computational experiments that demonstrate the performance of the value functions 

obtained from three test scenarios.  

(d) Verification of the three developed state transition metamodels.  

In section 2, the DACE-based SDP method is reviewed and a brief background of the data-mining 

techniques used in this study is presented. Section 3 introduces the Atlanta ozone pollution control 



 

 

problem. In section 4, the general procedures for developing the state transition function are described 

and tests are conducted on three cases of the state transition metamodeling of the Atlanta ozone pollution 

problem. Section 5 describes the implementation of the proposed state transition functions in an SDP 

process and application to a real Atlanta air quality scenario and 50 other random hypothetical scenarios. 

The accuracies of the state transition metamodels are also verified. Finally, section 6 presents the 

conclusions of the study and the scope of future work.  

2. Background 

2.1. Stochastic Dynamic Programming 

Equation (1) is the formulation of continuous state SDP for T discrete time stages presented by Chen et al. 

(1999) and Yang et al. (2009). At the beginning of stage t, the state vector is n
t Rx , the decision vector is

m
t Ru , and the vector of random variables are l

t Rε . The known stagewise cost functions are denoted 

by 1: RRc lmn
t   and depend on the state, decision, and random variables at the beginning of stage t. 

The objective is to minimize the expected cost over T discrete stages, subject to certain constraints, namely, 

mn
t R   and the state transition given by )(tf . The state transition function defines the transition of the 

state variables from the current stage (𝒙𝑡) to the next stage (𝒙𝑡+1). 
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Given the state 𝒙௧ of the system at the beginning of stage t, we solve for the future value function 

(FVF) ( ( )t tV x ) using the recursion in Equation (2) (Bellman 1957, Bertsekas 2005):  
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2.2. DACE-based SDP 

Chen et al. (1999) used experimental design to discretize the state space and statistical modeling to 

approximate the FVF. This DACE-based SDP solution method is described in Figure 1. From a statistical 

perspective, the unknown FVF is the response surface of interest, and the state variables are the predictor 

variables. Experimental design is a statistical method for organizing a data collection to enable the desired 

data analysis (Mason et al. 2003). In DACE-based SDP, the experimental design selects state points over 

the state space. The computer experiment is used to conduct stagewise optimization, as expressed by 

Equation (2), for each of the designed state points to obtain the optimized objective value on the FVF. The 

points on the FVF represent the response values of the computer experiment. A statistical model is then 

constructed to estimate the FVF based on these data, with the input (predictor) variable values obtained 

from the experimental design, while the output (response) variables are obtained by optimization using a 

computer model. Specifically, an OA of strength 3 is used as the experimental design, and the multivariate 

adaptive regression splines (MARS) method is used to approximate the FVFs of Chen et al. (1999).  

<insert Figure 1> 

2.3. Data Mining in Computer Experiments for Optimization 

Ariyajunya et al. (2017) used a combination of data mining techniques such as feature selection and 

feature extraction to develop new state transition models of the Atlanta ozone pollution control problem 

considered by Yang et al. (2009). Specifically, they used feature selection techniques such as stepwise 

regression, regression trees (Breiman et al. 1984), and a multiple-testing procedure based on the false 

discovery rate (FDR) (Benjamini and Hochberg 1995) to downsize the problem by identifying the 
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important subset of the original features. Feature extraction techniques such as principal component 

analysis (PCA) and partial least squares (PLS) (Wold et al. 2001) were used to create new orthogonal 

features based on transformations of the original features, obtaining useful information for modeling (Kim 

2009). As an illustration for the Atlanta ozone pollution problem, the original correlated state space is 

presented in Figure 2(a), and the orthogonalized state space in Figure 2(b). However, not every technique 

combination is efficient for this particular problem. Through the application of four different evaluation 

criteria, Ariyajunya et al. (2017) demonstrated that the combination of stepwise regression and PLS 

(stepwise-PLS) produced better overall results. This combination was thus used in the present study to 

directly reduce the dimension of the ozone pollution problem and orthogonalize the state space. 

<insert Figure 2> 

3. Atlanta Ozone Pollution Control Problem 

The Atlanta ground-level ozone pollution problem in Yang et al. (2009) includes the ozone state variables 

at different monitoring stations and different time stages, which are highly correlated. As described in 

section 1, NOx and VOCs are the main causes of high ground-level ozone concentration in urban and rural 

areas. However, Atlanta is “NOx-limited,” which means that it would be ineffective to target VOC 

emissions in a control strategy. Thus, the focus was on only NOx emissions in this case study. To control 

NOx, it is necessary to control both point- and non-point sources. Power plants and other heavy industries 

are categorized as point sources of NOx emissions, while other sources such as automobiles and small 

industries are treated as non-point sources. Yang et al. (2009) aggregated the 40 × 40 grid of the Atlanta 

Urban Airshed Model (UAM), which covers a 160 × 160 km region in the metropolitan area, into a 5 × 5 

grid representing non-point source emissions. The region contains a total of 102 point sources. The ozone 

concentrations are monitored by four Photochemical Assessment Monitoring Stations (PAMS) located at 

Conyers, S. Dekalb, Tucker, and Yorkville. 



 

 

The present study objective for the Atlanta ozone pollution case was to prevent the hourly averaged 

ozone concentrations from exceeding the U.S. EPA standard limit, which was 0.125 parts per million (ppm) 

at the time of the study (it has since been decreased; see http://www.epa.gov/air/criteria.html). To reduce 

the ozone concentrations, emission controls were applied to specific areas and time stages. Because the 

ozone concentration increases during the daytime when the sun is shining, only time stages from 4:00 AM 

to 7:00 PM were considered as potential time stages for reducing emissions. To apply SDP to the pollution 

control, five 3-h time stages were defined: 4:00 AM to just before 7:00 AM (time stage 0), 7:00 AM to just 

before 10:00 AM (time stage 1), 10:00 AM to just before 1:00 PM (time stage 2), 1:00 PM to just before 

4:00 PM (time stage 3), and 4:00 PM to just before 7:00 PM (time stage 4). Time stage 0 was considered as 

the initialization stage and the SDP stages were based on time stages 1 through 4. 

Regarding the use of SDP to solve this ozone pollution control problem, at the beginning of time 

stage t, the known state variables describe the status of all the factors that may affect the ozone 

concentrations. A series of decisions must be made in time stages 1 through 4 to minimize the total cost 

of achieving the EPA ozone goals. According to the SDP formulation in Equation (1), the state and 

decision variables of the Atlanta ozone pollution case can be defined as follows. The state variables (𝒙௧) 

at time stage t include all the historical information on the ozone concentrations and NOx emissions at 

various spatial locations across the metropolitan Atlanta area. In other words, the initial set of potential 

state variables at time stage 𝑡 includes information related to the ozone air chemistry during time stages 

0 to t-1. The decision variables (𝒖௧) are the actions to be performed at time stage 𝑡 to control the 

amounts of emissions at various locations and times over the course of the entire day. 

According to Yang et al. (2009), the objective in each stage is established using the following criteria: 

(1) if the ozone levels cannot satisfy the EPA standard, then the control policy should minimize the ozone 

levels; (2) if the ozone levels can satisfy the EPA standard, then the expected cost of the control policy 

should be minimized. Instead of using strict constraints, Yang et al. (2009) used a penalty approach to 

prioritize satisfying the EPA standard. They divided the objective function into two parts, namely, the 



 

 

emission reduction cost function and the penalty cost function. The above criteria and objective function 

proposed by Yang et al. (2009) were utilized in the present study (see Yang et al. (2009) for the details).  

4. Development of State Transition Function 

In the SDP formulation in Equation (2), the state transition function is that which describes the evolution 

of the system state between the current time stage and the next one. In the case of the present ozone 

problem, at each stage, an air quality model such as the Atlanta UAM is required to evaluate the emission 

action strategies to determine the resulting ozone concentrations based on the state and decision variables. 

The UAM may be used as a state transition function to predict the initial ozone state variables of the next 

stage. However, the direct application of the UAM when using the SDP for ozone concentration and state 

transition calculations is impractical because of the high computational cost and requirement of a very 

large amount of input data. There is thus the need to use a more efficient state transition model as a 

surrogate for the UAM in SDP. In the SDP literature, the state transition model is typically stationary and 

known (e.g., Chen et al. 1999, Fan et al. 2013). In the present study, SDP was used to address the more 

challenging case of non-stationary state transitions and to estimate the unknown system dynamics via data 

mining techniques. In addition to the following state transition function,  

𝒙௧ାଵ = 𝑓௧(𝒙௧, 𝒖௧, 𝜺௧)   ,           (3) 

which applies to the other historical state variables at time stage t+1, the identity transitions defined by 

Yang et al. (2007) were also employed in this study. 

Section 4.1 below describes a general procedure for developing state transition functions, and section 

4.2 presents three test cases of state transition metamodels for the Atlanta ozone pollution scenario. 

4.1. Procedure of State Transition Modeling 

It was assumed in this study that the state transition functions were unknown. It was therefore necessary to 

estimate the functions using real data acquired from the system itself, or data obtained by a simulation of 



 

 

the system dynamics. Even if the Atlanta UAM were available, it might be too computationally impractical 

to be directly employed within an optimization. In the use of the DACE-based SDP approach, this issue is 

further complicated by the presence of multicollinearity over the state space. The degree of 

multicollinearity can be measured using the VIFs obtained by regression modeling (Kutner et al. 2005). In 

this study, we defined a case with VIFs < 4 as low multicollinearity, a case with maximum VIF > 10 as high 

multicollinearity, and a case with 4 < VIFs < 10 as mid-level multicollinearity. To distinguish the effect of 

high multicollinearity from that of low multicollinearity, the cases with mid-level multicollinearity was not 

considered in this study. In theory, high VIFs indicate that the variances of the parameter estimators are 

inflated by high multicollinearity, resulting in undesirable models. An appropriate process should therefore 

be adopted in developing the state transition model. The following method was previously used by the 

authors (Yang et al. 2007) 

<insert Figure 3> 

Firstly, the initialization phase is used to identify the stages, state variables, and decision variables of 

the system, including the modeling space (the boundaries of the state and decision variables). The data 

collection phase is then used to collect data on the system dynamics and performance as it evolves 

through the time stages. In the mining phase, feature selection data mining techniques is used to eliminate 

the state and decision variables that clearly do not influence the state transitions. The modeling phase is 

used to construct the statistical prediction models of the future state outputs (previously expressed by 

Equation (3)), and the uncertainty modeled through statistical analysis is combined with the prediction 

models to incorporate random disturbances in the state transition. To improve the modeling accuracy, the 

modeling phase may involve additional data collection for the variables selected in the mining phase.  

Considering that the dimensionality of the original state variables is 524, the primary goal of the 

above process is to reduce this dimensionality of the problem. Regarding the high multicollinearity in the 

state space, after the general feature selection procedure of the mining phase, further and careful variable 

selection may potentially yield regression models with low VIFs. An alternative approach developed in 

the present study involved modification of the representation of the state variables by transforming them 



 

 

into an orthogonalized set (𝒛௧) using a feature extraction technique, after the feature selection in the mining 

phase. Thus, compared with Equation (3), the stochastic state transition function for 𝒛௧ is as follows: 

𝒛௧ାଵ =  𝑔௧(𝒛௧, 𝒖௧ , 𝜺௧)   ,              (4) 

where 𝑔௧ is the state transition function of the orthogonalized variables 𝒛௧ at time stage t. The decision 

variables are not orthogonalized because they are not part of the experimental design process. Besides, for 

optimization purposes, it is more practical to maintain the decision variables in their original form. 

4.2. Three Test Cases of the Atlanta Ozone Pollution Problem 

To examine the impact of multicollinearity on the SDP solution, three test cases of the Atlanta ozone 

pollution problem were considered. The differences between the cases were in the methods of addressing 

multicollinearity. In the high-VIF case, multicollinearity was not addressed and high-VIF metamodels were 

used. In the low-VIF case, multicollinearity was addressed by using carefully crafted regression models to 

obtain low-VIF metamodels. In the orthogonalized case, feature extraction was used to orthogonalize the 

state space after the feature selection procedure. The stepwise-PLS approach, which performs better than 

the other data mining techniques presented by Ariyajunya et al. (2017), was used for the mining phase in the 

orthogonalized case. In addition to the transition models used in the high- and low-VIF cases, identity 

transition (Yang et al. 2007) was also applied. Identity transition could not be applied to the orthogonalized 

case because of the orthogonalized state variables. Instead, prediction models developed with the aid of 

orthogonalized data were used to determine the values of the ozone variables. The high-VIF, low-VIF, and 

orthogonalized test cases are described in sections 4.2.1, 4.2.2, and 4.2.3 below, respectively. 

4.2.1. High-VIF Test Case 

The high-VIF state transition metamodels were deliberately developed to represent a worst-case outcome 

in the presence of high multicollinearity. The high-VIF models forced all the ozone state variables in the 



 

 

model, while the stepwise regression for feature selection was only used to select additional emission 

variables. 

<insert Table 1> 

Table 1 summarizes the variables of the high-VIF ozone models. Based on the notations of Yang et al. 

(2009), the first two letters indicate the PAMS sites (cy = Conyers, sk = South DeKalb, tk = Tucker, and 

yk = Yorkville); the second two letters indicate the ozone level (M3 = maximum ozone); and the last two 

letters indicate the time stage (p1 = stage 1, p2 = stage 2, p3 = stage 3, and p4 = stage 4). For example, 

“cyM3p1” denotes the maximum ozone (M3) level at the Conyers site at time stage 1. It is necessary to 

consider all previous state variables in an ozone model. For example, the high-VIF metamodel for the 

Yorkville site at time stage 1 (ykM3p1) contains all the four ozone state variables for time stage 0 

(cyM3p0, skM3p0, tkM3p0, and ykM3p0). Stepwise regression is then used to select 13 additional 

emission variables to give a total of 17 variables. The highest VIF value for the ykM3p1 model is 62.1101, 

which is statistically very high.   

4.2.2. Low-VIF Test Case 

The low-VIF test case was based on the work of Yang et al. (2007). However, an examination of the 16 

models used in this previous study clearly revealed that three of them had very high VIFs. As noted in 

section 4.1, however, further careful variable selection after the general feature selection may be used to 

obtain low-VIF metamodels. The low-VIF metamodels were obtained in this study by adding a model 

correction procedure that removed some variables and refitted and re-evaluated the models until VIFs < 4. 

In addition, if some predictors in the models were not significant, the models were further corrected through 

stepwise regression to select only the statistically significant predictors using a significance level of 0.05. 

The results of the low-VIF metamodels are presented in Table 2. 

<insert Table 2> 

4.2.3. Orthogonalized Test Case 



 

 

An alternative approach to addressing multicollinearity in the state space was introduced in section 4.1. 

The approach involves the addition of a feature extraction procedure to the mining phase. In this study, 

we used the stepwise-PLS technique recommended by Ariyajunya et al. (2017), in which stepwise 

regression is used to select the important variables and PLS is used to orthogonalize the state space in the 

mining phase. Following is the procedure for using this technique to obtain the state transition model in the 

mining phase: 

1. Stepwise regression is used to select the statistically significant state and decision variables. 

2. At each time stage t, PLS is used to orthogonalize the selected state variables while the decision 

variables are maintained. 

3. The orthogonal state transition model for transitioning 𝒛௧ to 𝒛௧ାଵ is constructed for time stage T-1 

to 1. 

(a). 𝒛௧ାଵ is modeled as a function of the orthogonal state variables 𝒛௧. 

(b). The residuals from 3(a) are modeled as functions of the decision variables (𝒖௧). 

In addition to the orthogonalized state transition metamodels, the prediction models of the ozone 

variables were created from the last time stage T to time stage 1. The first step of this process was the use of 

the orthogonalized state variables (𝒛௧) to model the ozone variables (𝑶௧). This was followed by using the 

original decision variables to model the function of the residuals of the first step.  

Appendix B in the work of Ariyajunya (2012) presents an equation for obtaining the ozone variables 

𝑶௧ for time stages 1–4, as well as the orthogonal state transition model. A summary of the results of the 

stepwise-PLS metamodels for each stage is also presented in Chapter 4 of the same work. 

5. Computational Results 

Table 3 summarizes the numbers of state variables and decision variables obtained by the three types of 

state transition metamodels described above. The results for the high-VIF metamodels in the table include 

the majority of both the state and decision variables. All the variables for the low-VIF metamodels are 



 

 

subsets of the variables for the high-VIF and stepwise-PLS metamodels. The dimension of an SDP 

problem is determined by the maximum number of state variables for all the stages; the SDP dimensions 

when using the low-VIF, high-VIF, and stepwise-PLS metamodels are thus 23, 92, and 25, respectively, 

which indicate complexity of the ozone pollution problem. 

<insert Table 3> 

The application of SDP to the present ozone pollution control problem is described in section 5.1 

below. After using the DACE-based SDP method to approximate the FVFs, simulation of a forward SDP 

“real-time” re-optimization process was used to determine the expected value of a real-time policy. The 

computational results of the optimal control policy for one real Atlanta scenario and 50 random 

hypothetical scenarios are presented in section 5.3. The verification of each of the utilized transition 

models is described in section 5.4.  

5.1. Constructing FVFs of Atlanta Ozone Problem 

The solution of the ozone problem using the DACE-based SDP method begins at the last stage and moves 

backward until all the stages have been solved, as illustrated in Figure 1. Following Yang et al. (2009), a 

low-discrepancy sequence developed by Sobol (1967) was used to discretize the state space, and MARS 

was used to approximate the FVFs of the control problem. The 2000 designed points of the Sobol 

sequence were generated to represent the state space. At each designed point, nonlinear programming was 

used to obtain an optimal solution, and a commercial optimization library (NAG E04) was then employed 

as the optimization module for achieving the SDP solution of the Atlanta ozone problem. The three 

different methods for modeling the state transition function described in section 4 were respectively 

implemented. Unlike in the work of Yang et al. (2009), where the MARS approximations were allowed to 

have negative values, the negative MARS values were truncated to zero in the present study, because a 

negative cost is unrealistic.  

<insert Table 4> 



 

 

To reduce the possibility of only a local optima being achieved, multiple starting points are usually 

used in the implementation of an optimization module. However, while the use of many starting points 

also increases the chance of approaching a global optimal cost, for computational reasons, only two 

starting points (the midpoint and the lower bound) and an additional ten random points between the two 

were employed in the present study. Further, previous numerical experiments have demonstrated that the 

use of multiple starting points tends to produce better overall results compared with the use of only one 

(the middle point), especially in stages 1 and 2. The addition of ten other random points, as was done in 

the present SDP implementation, generally tends to reduce the cost. The details of the present application 

of SDP to the Atlanta ozone pollution problem are given in Table 4. Table 5 summarizes the running time 

and MARS approximations for the FVFs in each stage. As can be observed, the low-VIF procedure 

requires the longest time for the MARS approximation of the FVFs, but the shortest time for the SDP 

solution. The high-VIF procedure requires the shortest total time, and the stepwise-PLS procedure the 

longest. The FVF approximations were subsequently used to determine the optimal policies for the 

“real-time” forward simulation, as described in the next section. 

<insert Table 5> 

5.2. Forward Re-optimization for Optimal Control Policy  

The forward re-optimization technique was used to simulate the real-time optimal control policy 

(Tejada-Guibert et al. 1993) in the present study. The simulation procedure is expressed in Figure 4. 

Given the initial state vector for stage 1 (𝒙ଵ), the process was sequentially implemented to solve the 

optimal control policy (𝒖୲) until all the stages were solved. For the present ozone problem, the optimal 

control policy for the specified initial emissions and ozone levels before time stage 1 determined the 

reduction of the emissions at specific locations and times over the course of the day.  

<insert Figure 4> 

5.3. Comparison of Results 



 

 

The results of using the three different transition models for the SDP implementation in this study were 

evaluated by considering two test cases of the initial state vector. The first test case involved a real 

Atlanta scenario, with July 31, 1987 being the first day of the ozone episode. The second test case 

involved 50 random hypothetical initial scenarios.    

5.3.1. Real Atlanta Scenario 

The initial emissions and ozone levels at the beginning of the first time period were obtained from the 

nominal values recorded on July 31, 1987, and the re-optimization algorithm was used to determine the 

optimal control decisions. The Atlanta UAM was used to simulate the optimized policy to calculate the 

ozone level. The application of the obtained optimized policy to the UAM thus afforded the best 

representation of the actual ozone level. Table 7 presents the emission reductions achieved by the optimal 

control policies for this real scenario using different metamodels. Based on the objective function of the 

Atlanta pollution problem introduced in section 3, the optimal control policy obtained by the low-VIF 

metamodels requires the lowest daily total emission reduction of 27.66%, followed by that obtained by 

the stepwise-PLS metamodels (36.63%), and lastly that obtained by the high-VIF metamodels (47.03%). 

All three policies generally require the highest emission reduction in time stages 2 and 3 (covering 10 AM 

to 4 PM). The maximum ozone level trajectories obtained by the transition metamodels and the UAM are 

shown in Figure 5. The primary y-axis on the left side represents the maximum ozone level, while the 

secondary y-axis on the right side represents the percentage emission reduction. The “BASE CASE” line 

represents the maximum ozone level when no control action is implemented. The “UAM-LVIF,” 

“UAM-HVIF,” and “UAM-PLS” lines represent the actual ozone levels obtained by simulation using the 

UAM together with the optimal control policies obtained by the low-VIF, high-VIF, and Stepwise-PLS 

methods, respectively. The “LVIF,” “HVIF,” and “PLS” lines represent the ozone levels predicted by the 

low-VIF, high-VIF, and stepwise-PLS metamodels, separately.  

It can further be seen from Figure 5 that the high-VIF metamodels are the least accurate and always 

overestimate the maximum ozone level. Consequently, they require greater emission reduction than 



 

 

necessary, and hence a higher NOx emission reduction cost. The low-VIF metamodels seem to have the 

best performance, although they slightly underestimate the ozone levels, which may result in lower 

emission reductions than necessary in time stages 3 and 4. The stepwise-PLS metamodels perform better 

than the High-VIF metamodels, but result in a small exceedance of the EPA limitation at stage 4, and this 

may prompt stringent emission reduction policies in time stage 3. However, because all the actual ozone 

levels in the low-VIF case are within the EPA limit of 0.125 ppm, the low-VIF metamodels, which 

require the least emission reductions, are the first recommendation for the development of control 

strategies for this particular case. 

<insert Table 6> 

<insert Figure 5> 

5.3.2. Fifty Hypothetical Scenarios 

The above real scenario represents only one specific situation. To demonstrate the applicability of SDP to 

different situations, 50 hypothetical scenarios were generated and tested. The initial emissions for these 

hypothetical scenarios were randomly generated based on the emission ranges of the above real scenario; 

values within the ranges were used as inputs to the UAM to obtain the initial ozone levels of the 

hypothetical scenarios. The optimal control policies for the hypothetical scenarios were obtained by the 

same procedure used for the real scenario. The average emission reductions required by the optimal 

control policies obtained by the different metamodels are presented in Figure 6 and summarized in Table 

7. The emission reduction requirements for the 50 scenarios can be seen to be comparable to those for the 

real scenario.  

<insert Figure 6> 

<insert Table 7> 

The high-VIF metamodels still have the worst performance for the 50 hypothetical scenarios, with the 

stepwise-PLS and low-VIF metamodels exhibiting comparable performances. The major difference 



 

 

between the low-VIF and the stepwise-PLS metamodels occurs in time stage 4, where the maximum 

ozone level is underestimated by the low-VIF metamodels but overestimated by the stepwise-PLS 

metamodels. Nevertheless, the maximum ozone level determined by the low-VIF metamodels for time 

stage 4 is still within the EPA limit of 0.125 ppm, indicating that the low-VIF metamodels once again 

outperform the others overall. Different from the real scenario in section 5.3.1, the actual ozone levels 

using stepwise-PLS metamodels at stage 4 are not exceeded the EPA limitation, which denotes overall, 

stepwise-PLS metamodels have good performance.    

5.4. Verification of Metamodels 

The most desirable optimal policy for the Atlanta ozone problem is that which requires the least emission 

reductions to maintain the maximum ozone level within EPA standards. However, the computational 

results of the SDP process are affected by the accuracy of the state transition metamodels. The best 

optimal policy obtained by SDP alone may thus be insufficient to achieve the best overall results. There is 

thus the need to assess the accuracy of the metamodels. For this purpose, the optimal control policies 

obtained for the 50 hypothetical scenarios in section 5.3.2 were simulated using the UAM to determine 

the maximum ozone levels. The results were then compared with the maximum ozone levels predicted by 

the metamodels. The deviations between the two with respect to the monitoring station and time stage are 

presented in Figs. 7(a) and 7(b), respectively. 

Figure 7 once again shows that the high-VIF metamodels have the worst performance, because they 

produce the largest average deviations relative to the UAM results with respect to both station and time 

stage. Compared with the performance of the high-VIF metamodels, the low-VIF and stepwise-PLS 

metamodels yield much better control of ozone pollution. However, at stage 1, the stepwise-PLS 

metamodels produce larger deviations than the other two metamodel types; at stage 4, the low-VIF 

metamodels underestimate the ozone levels with an average deviation of -0.00183, indicating the 

requirement for more actions for emission reduction in time stage 2 or 3. Overall, taking time stage and 



 

 

station into consideration, the low-VIF metamodels are the most accurate, which is consistent with the 

results of the previous experiments. 

<insert Figure 7> 

6. Conclusion 

In this study, we focus on developing the more practical and more efficient emission control policy for 

cities such as Atlanta, GA, dealing with harmful ground-level ozone concentrations. This is a major 

subject of interest to many modern cities and governments faced with the need to implement appropriate 

environmental protection regulations. However, the state variables of the ozone pollution problem such as 

Atlanta case, at different monitoring stations and different time stages are known to be highly correlated. 

In statistics, multicollinear state variables produce unstable models with high VIFs. To address this issue, 

we developed three types of statistical metamodels, namely, high-VIF, low-VIF, and stepwise-PLS 

metamodels, as surrogates of the UAM, using different approaches to consider the multicollinearity in the 

state space. The three types of models were used to implement SDP for one real Atlanta scenario and 50 

other random hypothetical initial scenarios. The results showed that the high-VIF metamodels were less 

accurate than the other models and always overestimated the maximum ozone level. The optimal policies 

obtained by it tended to require excessive emission reductions. The SDP optimal policies based on the 

low-VIF metamodels tended to require the least emission reductions. Furthermore verification also 

revealed that the low-VIF metamodels afforded the most accurate predictions. Although the maximum 

ozone levels predicted by the low-VIF metamodels in time stage period 4 in Figures 5–7 represent slight 

underestimations on average, they would not significantly affect environmental policies because the 

resultant actual ozone levels are within the EPA limit of 0.125 ppm.  

However, whereas the low-VIF metamodels produce better results, their metamodeling process 

attempts to avoid combinations of variables that are highly correlated. This is likely to yield a false 

impression of the excluded variables being unimportant. In contrast, the stepwise-PLS approach maintains 



 

 

the important state variables, even if they are correlated. Moreover, the results of the stepwise-PLS 

metamodels are almost comparable to those of the low-VIF metamodels. In terms of the modeling process, 

low-VIF metamodeling also requires special effort, while the stepwise-PLS approach can be automated. 

Nevertheless, the results of the considered Atlanta ozone pollution control problem with multicollinear 

state spaces suggest that the low-VIF metamodels should be the first choice. An orthogonalization-type 

method such as the use of stepwise-PLS metamodels should be considered when accurate low-VIF 

metamodels cannot be constructed, or when an automated process is desired.  

We would note in closing that the MARS-approximated FVFs in the present study contained 

non-convexity, and there is thus room for further study toward using a convex version of MARS to 

approximate the FVFs. The use of a monotonic ozone transition function without negative coefficients 

should also be explored; all the negative coefficients associated with the decision variables were truncated 

to zero in this study, degrading the accuracy of the developed models. In addition, the stepwise-PLS 

approach should be further investigated toward using it to achieve more accurate metamodels, thus 

avoiding the special effort required to create the low-VIF metamodels. 
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Tables 

Table 1. Summary of the high-VIF ozone state transition functions 

  Maximum 

Ozone 

 Model 

Number of 

Forced 

Variables 

Number of 

Selected Variables 

Number of Total 

Variables in Model 

Model 

R-Square 

Root 

MSE     

  

Maximum  

  VIF 

   cyM3p1  4 7 11 0.2682  0.0007    1.0859 

   skM3p1  4 11 15 0.9864  0.0006    17.8589 

   tkM3p1  4 5 9 0.9612  0.0012    62.0089 

   ykM3p1  4 13 17 0.9945 <0.0001    62.1610 

 

cyM3p2 8 9 17  0.9937 0.0003   30.2103   

skM3p2 8 10 18  0.2642 0.0056   69.7131   

tkM3p2 8 10 18  0.6370  0.0027 69.4942   

ykM3p2 8 20 28  0.9993 <0.0001 163.6091  

 

cyM3p3 12 14 26 0.9846 0.0006 76.9823 

skM3p3 12 28 40 0.9920 0.0010 75.9784 

tkM3p3 12 17 29 0.9747 0.0010 74.8509 

ykM3p3 12 15 27 0.9994 <0.0001 1366.4426 

 

cyM3p4 16 24 40 0.9847 0.0013 95.7745 

skM3p4 16 26 42 0.9930 0.0009 86.5118 

tkM3p4 16 43 59 0.9891 0.0008 92.4630 

ykM3p4 16 32 48 0.9994 <0.0001 374.8161 

 

 

 



 

 

Table 2. Summary of the low-VIF ozone state transition functions 

Maximum Ozone 

Model 

Model 

R-Square 

Root MSE Maximum p-value Maximum VIF 

Number of 

Variables 

in Model 

cyM3p1 0.2646 0.0007 0.0224 1.0149 7 

skM3p1 0.9855 0.0007 0.0072 1.0075 7 

tkM3p1 0.9607 0.0013 0.0259 1.0161 5 

ykM3p1 0.9942 <0.0001 0.0027 1.0158 7 

 

cyM3p2 0.9935 0.0003 0.0056 1.2438 7 

skM3p2 0.1954 0.0058 0.0364 1.0306 7 

tkM3p2 0.6080 0.0028 0.0052 1.0282 6 

ykM3p2 0.9992 <0.0001 <0.0001 1.0128 6 

 

cyM3p3 0.9808 0.0007 <0.0001 1.0179 7 

skM3p3 0.9692 0.0019 <0.0001 1.0297 7 

tkM3p3 0.9536 0.0014 <0.0001 1.3483 7 

ykM3p3 0.9990 0.0000 <0.0001 2.3313 5 

 

cyM3p4 0.9625 0.0019 0.0021 3.4408 7 

skM3p4 0.9801 0.0014 <0.0001 1.5708 7 

tkM3p4 0.9308 0.0019 <0.0001 1.5675 7 

ykM3p4 0.9624 0.0001 <0.0001 1.0166 7 

 

 

 



 

 

Table 3. Summary of the numbers of state and decision variables for the different model types 

 

Stage 

 

Variables 

 

Number of Initial Variables 

State Transition Model Type 

Low-VIF High-VIF Stepwise-PLS 

 

 

Stage 1 

 

Number of decision variables 40 17 29 29 

Number of state variables 44 16 34 25 

Total number of variables 84 33 63 54 

 

Stage 2 

Number of decision variables 40 9 31 28 

Number of state variables 88 23 59 23 

Total number of variables 128 32 90 51 

 

Stage 3 

Number of decision variables 40 9 30 25 

Number of state variables 132 21 82 14 

Total number of variables 172 30 112 39 

 

Stage 4 

Number of decision variables 40 3 12 7 

Number of state variables 176 19 92 9 

Total number of variables 216 22 104 16 

 

 

 

 



 

 

Table 4. SDP implementation details for all the runs 

DoE for state spaces discretization 2000-point Sobol sequence 

Ozone threshold 0.125 ppm (modeled in penalty functions) 

Negative coefficients in ozone models Truncated to zero 

MARS approximation algorithm MARS ASR-II 

Maximum basis functions for MARS 2000 

Maximum order of interaction in MARS 2 

Number of knots 35 

Non-linear optimization library NAG Fortran Mark 15 

Optimization starting points for stages 1 and 2 Midpoint, lower bound, and 10 random points 

Optimization starting points for stages 3 and 4 Midpoint and lower bound 

 

Running environment 

Workstation with dual 2.6 G AMD 

Atlon processors and 3 GB memory 

Cent OS 4.9 

gcc version 3.4.6 20060404 (Red Hat 3. 4. 6-9) 

 

 

 

 

 



 

 

Table 5. Number of MARS basis functions and the running times 

Model Stage 
No. of State 

Variables 

No. of 

Decision 

Variables 

No. of Basis 

Functions 

Selected by 

MARS 

Fitting 

MARS 

(hh:mm:ss) 

SDP Solution 

(hh:mm:ss) 

Total Running 

Time 

(hh:mm:ss) 

Low-VIF Stage 1 16 17 394 0:53:31 1:07:57 2:01:28 

Low-VIF Stage 2 23 9 1853 50:09:49 0:16:44 50:26:33 

Low-VIF Stage 3 21 9 104 0:02:47 0:05:21 0:08:08 

Low-VIF Stage 4 19 3 90 0:02:30 0:00:32 0:03:02 

Total time 51:08:37 1:30:34 52:39:11 

 

High-VIF Stage 1 34 29 1296 30:01:51 0:59:24 31:01:23 

High-VIF Stage 2 59 31 300 1:01:09 4:40:24 5:41:33 

High-VIF Stage 3 82 30 227 0:54:26 0:23:25 1:17:51 

High-VIF Stage 4 92 12 182 1:57:53 0:02:24 2:00:17 

Total time 33:55:19 6:05:45 40:01:04 

 

Stepwise-PLS Stage 1 25 29 1354 24:27:20 29:49:16 54:16:36 

Stepwise-PLS Stage 2 23 28 964 7:57:58 27:54:13 35:52:11 

Stepwise-PLS Stage 3 14 25 215 0:07:14 4:32:07 4:39:21 

Stepwise-PLS Stage 4 9 7 72 0:00:32 0:03:58 0:04:30 

Total time 32:33:04 62:19:34 94:52:38 

 

 



 

 

Table 6. Emission reductions required by the determined optimal policies for the real Atlanta scenario 

 

 

Real Atlanta  

Scenario 

Low-VIF High-VIF Stepwise-PLS 

Emission 

Reduction 

(gm-mol) 

 

% Reduction 

Emission 

Reduction 

(gm-mol) 

 

% Reduction 

Emission 

Reduction 

(gm-mol) 

 

% Reduction 

Stage 1 446,941.4 14.77% 1,531,936.0 50.63% 520.937.7 17.22% 

Stage 2 1,147,042.2 44.81% 1,535,720.7 60.00% 862,915.9 33.71% 

Stage 3 1,101,894.7 42.35% 1,594,932.6 61.30% 1,754,379.6 67.42% 

Stage 4 422,009.0 13.68% 639,188.0 20.71% 990,565.7 32.10% 

Daily Total 3,117,887.4 27.66% 5,301,777.3 47.03% 4,128,798.9 36.63% 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 7. Average emission reductions required by the determined optimal policies for the 50 hypothetical 
scenarios 

 

50 

Hypothetical 

Scenarios 

Low-VIF High-VIF Stepwise-PLS 

Average 

Emission 

Reduction 

(gm-mol) 

 

% Average 

Reduction 

Average 

Emission 

Reduction 

(gm-mol) 

 

% Average 

Reduction 

Average 

Emission 

Reduction 

(gm-mol) 

 

% Average 

Reduction 

Stage1 811,481.7 26.82% 1,667,498.8 55.11% 1,001,731.1 33.11% 

Stage 2 900,083.1 35.16% 1,060,932.1 41.45% 1,065,100.0 41.61% 

Stage 3 997,836.3 38.35% 1,630,609.9 62.67% 1,850742.3 71.13% 

Stage 4 473,427.0 15.34% 735,351.2 23.83% 813,879.3 26.37% 

Daily Total 3,182,828.0 28.23% 5,094,392.0 45.19% 4,731,452.7 41.97% 

 
  



 

 

Figures 

 

Figure 1. General algorithm for solving continuous-state SDP problems (Chen et al. 1999). 

 

 

 

 

 

 

1. For each stage t: use DoE to sample N points from the state space . 

2. In last stage T: 
(a) For each discretized point xjT, j=1…N, solve 

 

(b) Approximate ( )T TV x with ˆ ( )T TV x for all n
Tx R , by applying a statistical 

regression approach such as MARS to the data for TV from step 2(a). 

3.  In each stage t = T – 1…1: 
(a) For each sampled state point xjt, j = 1…N, solve 

1
ˆ( ) min { ( , , ) ( ( , , ))}

jt
t jt t jt jt j t jt jt j

u
V x E c x u V f x u    

(b) Approximate ( )t tV x with ˆ ( )t tV x for all n
tx R , as in step 2(b). 

 

 N

tjt 1
x

( ) min { ( , , )},
jT

T jT T jT jT ju
V x E c x u 



 

 

 

(a) 

 

(b) 

Figure 2. Relationship between state variables in the (a) original multicollinear state space and (b) 
orthogonalized state space (Ariyajunya et al. 2017). 

 

 

 



 

 

Figure 3. State transition modeling process (Yang et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 4. Forward simulation procedure for solving for the optimal control policy (Yang et al. 2009). 

 

 

 

 

 

 

 

 



 

 

 

Figure 5. Maximum ozone levels and emission reductions (Emis. Red.) for the real Atlanta scenario 

required by the optimal control policies determined using (A) low-VIF, (B) high-VIF, and (C) 

stepwise-PLS metamodels. 

 

 

 

 



 

 

 

Figure 6. Maximum ozone levels and emission reductions (Emis. Red.) for the 50 hypothetical scenarios 

required by the optimal control policies determined using (A) low-VIF, (B) high-VIF, and (C) 

stepwise-PLS metamodels. 

 

 

 

 

 



 

 

 

Figure 7. Average deviations between the metamodel and UAM predictions for the 50 hypothetical 

scenarios by (a) stations and (b) stages. 

 

 

 

 

 

 

 

 

 


