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Abstract

Multivariate adaptive regression splines (MARS) is a statistical modeling ap-

proach with wide real-world applications. In the MARS model building pro-

cess, knot positioning is a critical step that potentially affects the accuracy

of the final MARS model. Identifying well-positioned knots entails assessing

the quality of many knots in each model building iteration, which requires

much computation efforts. By exploring the change in the residual sum of

squares (RSS) within MARS, we find that local optima from previous itera-

tions can be very close to those of the current iteration. In our approach,

the prior change in RSS information is used to “warm start” an optimal knot

positioning. We propose two methods for MARS knot positioning. The first

method is a hill climbing method (HCM), which ignores prior change in RSS

information. The second method is a hill climbing method using prior change

in RSS information (PHCM). Numerical experiments are conducted on data

with up to 30 dimensions. Our results show that both versions of hill climbing

methods outperform Chen’s MARS knot selection method on datasets with

different noise levels. Further, PHCM using prior change in RSS informa-

tion performs best in both accuracy and computational speed. In addition,
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an open source Python code will be available upon acceptance of the paper on

GitHub (https://github.mit.edu/fengliu/MARSHC).

Keywords: MARS, Regression, Knot optimization, Knot positioning, Hill

climbing
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1. Introduction1

As a popular non-parametric regression technique, multivariate adaptive re-2

gression splines (MARS) algorithm was first introduced by Friedman in 1991 [1].3

Because of its flexibility and accuracy, MARS has been used in many studies4

including predicting distributions of freshwater diadromous fish [2], analyzing5

relationships between the distributions of 15 freshwater fish species and their6

environment [3], mining the customer credit [4], modeling direct response be-7

havior [5], building a decision-making framework for ozone pollution control [6],8

assessment of gully erosion susceptibility [7], estimating heating load in build-9

ings [8], modeling daily dissolved oxygen concentration [9] etc.10

Knot positioning is a time-consuming step in the MARS building processing,11

and it highly affects the accuracy of the final MARS model. The situation can12

getting worse for high dimensional regression model. In this research, it is de-13

sirable to reduce the computational cost of knot positioning, while maintaining14

an accurate model. Friedman [1] used all values from the predictive variables15

as candidate knot locations and used a greedy algorithm to select specific knot16

positions among all the candidates. The knot position that provides the greatest17

improvement in the residual sum of squares (RSS) was selected in each iteration18

of the MARS algorithm. Selecting a knot position from all possible data values19

is time-consuming when the data set is large. Chen et al. [10] used a fixed20

number of candidate knots that was a subset of the data values, such that the21

candidate knots were equally spaced. It is also possible to select a subset of the22

data values, such that candidate knots have the minimum number of data values23

between them (referred to as MinSpan in the R code “earth”), which can speed24
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(a) Training dataset (b) Model 1: R2=0.94 (c) Model 2: R2=0.99

Figure 1: MARS model with different knot positions

up the knot positioning process, but may miss some potentially superior knot25

positions that could achieve a more accurate MARS model. Koc and Iyigun26

[11] introduced a mapping approach to use more representative data points as27

candidate knots in the MARS knot positioning process. This approach can yield28

efficiency in knot positioning when the data are not evenly scattered over the29

input space. Miyata and Shen [12] proposed knot optimization using an evolu-30

tionary algorithm. Their approach can be generally applied for various forms of31

spline basis functions, but was only demonstrated for one input dimension and32

required additional computational effort compared to existing approaches.33

If knots are not positioned well, the MARS model may not represent the34

relationships properly because basis functions will only bend at these positions.35

Suppose we fit two input dimensions, as illustrated in Figure 1a, where x1 and x236

are the input variables, and the surface has multiple peaks and valleys. MARS37

models with different knot positions are shown in Figures 1b and 1c. MARS38

model 1 achieved a coefficient of determination of R2 = 0.94, and MARS model39

2 achieved R2 = 0.99, which indicates that MARS model 2 is better fit to the40

data than MARS model 1, as can be seen visually in the figures. Hence, limiting41

the set of candidate knots can degrade the model fit; however, an exhaustive42

search of knot positions is computational expensive.43

In this research, we propose improved knot positioning mechanisms during44

the MARS building process. We propose two new methods for MARS knot45

positioning that seek to reduce the computational effort of knot positioning46

without degrading the quality of fit. We refer to these methods as the hill47
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climbing method (HCM) and the hill climbing with prior information (PHCM)48

where the objective is to decrease the RSS. Numerical experiments using differ-49

ent dataset sizes and different numbers of candidate knots with different noise50

levels are investigated in this paper.51

The rest of the paper are organized as follows. In Section 2, the origi-52

nal MARS algorithm is introduced. Section 3 provides the description of the53

datasets. In Section 4, the knot optimization for MARS using hill climbing54

methods is described in detail. Section 5 presents the experimental results, and,55

finally, concluding remarks are given in Section 6.56

2. MARS background57

MARS is introduced for the regression setting with multiple input variables

and a response variable. In MARS model, the approximated MARS function is

composed from a linear model of basis functions, which is defined from hinge

functions or multiplication of hinge functions. The MARS model can be written

as follows:

f̂(x) =

M∑
m=0

{am ·Bm(x)} , (1)

where f̂(x) is the MARS model and Bm(x) is called the basis function. Here

m denotes the index of the basis function and M indicates the total number of

basis functions in the MARS model. The coefficient of m-th basis function is

denoted as am and x ∈ Rn denotes the predicting variable vector. MARS uses

a product form for the basis function:

Bm(x) =

Km∏
k=1

bk,m. (2)

Here bk,m is the k-th univariate function in Bm(x) and Km denotes the total58

number of univariate functions inBm(x). WhenKm = 1, then the basis function59

is univariate. Otherwise, Km is the degree of the interaction term.60

In each basis function, the refraction points are the knots for the basis func-
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tion. The bk,m are truncated linear functions of the form:

b(x|t) = [+(x− t)]+ = max{+(x− t), 0}, (3)

or

b(x|t) = [−(x− t)]+ = max{−(x− t), 0}, (4)

where the location t is called knot for the basis function.61

Let {xi, yi}Ni=1 represent a dataset, where xi ∈ Rn denotes the i-th data62

point in predicting variable dataset, and the i-th data point for the response63

variable is defined as yi. The sample size is denoted as N and i is the index of64

the data point (i = 1, 2, 3, . . . , N).65

The residual sum of squares between the observed value and the predicted

value, denoted as e, is defined as:

e =
1

N

N∑
i=1

[
yi − f̂(xi)

]2
. (5)

In general, a smaller e is considered to be a better fit to the data. In MARS, a66

penalty term with e is used to avoid overfitting, but e alone is used for selecting67

among knot positions within the MARS algorithm.68

The MARS forward stepwise algorithm [1] using the truncated linear univari-

ate basis function is given in Algorithm 1 where {xi, yi}Ni=1 is the input dataset

and Mmax is the maxmimum number of basis functions. In each MARS it-

eration, the algorithm seeks a pair of basis functions to add to its current set.

Candidate basis functions can be new univariate terms or interaction terms that

are split from the current set. The innermost loop of the algorithm (line 5-11)

considers all possible knot positions for a univariate term or additional split of

an interaction term. In line 1 of Algorithm 1, the MARS model starts with

a constant. The current best residual sum of squares e∗ is initialized to be

∞. From line 2 to line 17, it adds basis functions until Mmax basis functions

are added to the MARS model. From line 3 to line 13, the regression process
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tries to split on all already added basis functions. The set {v(k,m)}Km

k=1 is the

variable index set of the basis function Bm(x) and v denotes the variable index.

For example, if

Bm(x) = [+(x1 − 0.2)]+ · [−(x3 − 0.6)]+, (6)

then the set

{v(k,m)}Km

k=1 = {1, 3}. (7)

The candidate knot set of the basis function Bm(x) at v-th variable is denoted69

as {xj,v|Bm(xj) > 0}Nj=1 and it consists of the v-th variable values of the data70

points which make the basis function positive. In line 7, the new e for MARS71

model with new basis functions is calculated . From line 8 to 10, e is compared72

with e∗. If e is less than e∗, it indicates the new model is better, and we store73

the related information, e∗, the index of the basis function m∗, the variable74

index v∗ and the knot value t∗. In line 14 and line 15, two new basis functions75

are added to the MARS model.

Algorithm 1: MARS forward stepwise algorithm

Input: {xi, yi}Ni=1,Mmax

Result: MARS regression model f̂(x)
1 B1(x) = 1,M = 1, e∗ =∞
2 while M < Mmax do
3 for m = 1 toM do

4 for v /∈ {v(k,m)}Km
k=1 do

5 for t ∈ {xj,v|Bm(xj) > 0}Nj=1 do

6 f̂ =
∑M

i=1 aiBi(x) + aM+1Bm(x)[+(xv − t)]+ +
aM+2Bm(x)[−(xv − t)]+

7 e = mina1,...,aM+2 e(f̂)
8 if e < e∗ then
9 e∗ = e,m∗ = m, v∗ = v, t∗ = t

10 end

11 end

12 end

13 end
14 BM+1(x) = Bm∗(x)[+(xv∗ − t∗)]+
15 BM+2(x) = Bm∗(x)[−(xv∗ − t∗)]+
16 M = M + 2

17 end
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Figure 2: fL(x1, x2) d = 2

3. Datasets76

In this paper, 7 datasets are used to investigate and verify the proposed new77

methods. The first 6 datasets are generated from 6 functions and the Sobol78

sequence is used to sample values in the input space [13]. The seventh dataset79

is a wind farm power distribution dataset [14].80

The first dataset DL is generated from the Levy function fL(x) [15] as

fL(x) =sin2(πw1) +

d−1∑
i=1

(wi − 1)2
[
1 + 10sin2(πwi + 1)

]
+ (wd − 1)2

[
1 + sin2(2πwd)

]
wi = 1 +

xi − 1

4
, for all i = 1, . . . , d

− 10 6 xi 6 10, (8)

where x is the independent variable. The dimension of x is denoted as d, and in81

this paper, d = 30 which indicates x is 30-dimensional. Figure 2 is the surface82

of Levy function when d = 2.83

Datasets D1, D2, D3, D4 and D5 are generated from functions f1, f2, f3, f4

and f5 [11], respectively. In dataset D1, x has 7 dimensions. In dataset D2, x

is 10-dimensional. For D3, x has 10 dimensions and for D4, x is 3-dimensional.
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For D5, x is 21-dimensional with α = {0.15, −0.96, 0.09, 0.84, 0.55, −0.58,

0.21, 0.50, 0.1, −0.90} and x of D6 is also 2-dimensional. Figure 3 shows the

function surfaces when limiting the dimension to 2.

f1(x) =

7∑
i=1

[
ln2(xi − 2) + ln2(10− xi)

]
−

(
7∏

i=1

xi

)2

2.1 6 xi 6 9.9, i = 1, 2, 3, . . . , 7 (9)

f2(x) =

10∑
j=1

exp(xj)

(
cj + xj − ln

10∑
k=1

exp(xk)

)

c = [−0.6089,−17.164,−34.054,−5.914,−24.721,−14.986,−24.100,−10.708,

− 26.662,−22.179]

− 10 6 xi 6 10 (10)

f3(x) =x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 − 4(x4 − 5)2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + 2(x10 − 7)2 + 45

− 10 6 xi 6 10 (11)

f4(x) = sin
(πx1

12

)
cos
(πx2

16

)
− 10 6 x1 6 10,−20 6 x2 6 20 (12)
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f5(x,y) =

d∑
i=1

αi[3(1− xi)2 exp(−x2i − (yi + 1)2)− 10(
x

5
− x3i − y5i ) exp(−x2i − y2i )

− 1

3
exp(−(xi + 1)2 − y2i ) + 2xi],

d∑
i=1

αi = 1, for all i = 1, . . . , d,

− 2 6 xi 6 2,−2 6 yi 6 2 (13)

In the experiments, we added Gaussian noise with different levels (5%, 10%,84

and 20%) to the datasets to investigate and verify the robustness of the proposed85

methods HCM and PHCM. The signal-to-noise ratio (SNR) is defined as86

SNR =
Psignal

Pnoise
(14)

where Psingal is the average power of the signal and Pnoise is the average power87

of the noise [16]. Figure 4 and Figure 5 show D4 and D6 with different noise88

levels.89

4. Knot optimization for MARS using hill climbing methods90

In our proposed MARS knot positioning process, we define the change in

RSS as the objective function, given as

∆e = ep − ec,

where ep and ec are the RSS values of the prior iteration and the current itera-91

tion, respectively. If ∆e is negative, it indicates that the current MARS model92

is less accurate than the prior MARS model. If ∆e is positive, it indicates that93

the current MARS model is more accurate and is an improvement over the prior94

MARS model. The larger the value of ∆e, the more accurate the current MARS95

model is. Hence, we seek to maximize ∆e to find the best fitting MARS model96

under current settings (adding one knot to the current MARS model).97
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(a) f1(x1, x2) other xi = 4.0 (b) f2(x1, x2) other xi = 3.0

(c) f3(x1, x2) other xi = 4.0 (d) f4(x1, x2)

(e) f5(x1, y1) d = 1
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(f) f6(x1, y1) d = 1

Figure 3: Surfaces of dataset functions
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Figure 4: D4 with different levels of noise

4.1. Exploring the change in residual sum of squares function98

In the MARS knot positioning process, when we use ∆e, lines 8 to 10 in in99

Algorithm 1 will become:

8 ∆e = e∗ − e
9 if ∆e > 0 then

10 e∗ = e,m∗ = m, v∗ = v, t∗ = t
11 end

100

The ∆e will be calculated repeatedly for different basis functions to choose the101

knot with the largest ∆e value. Figure 6 shows ∆e functions of variable x1102

in MARS from subsequent iterations on a representative dataset DL. Assume103

x1 is the variable that we are considering in creating the next basis function104

Bm(x). Figure 6a is generated when there are no basis functions in the MARS105

model. Figures 6b and 6e are generated when there are already two and four106

basis functions, respectively, in the MARS model. From Figure 6a to Figure 6e,107
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(d) Noise level: 20%

Figure 5: D6 with different levels of noise

the three local maxima move only a little, and the global maximum is almost108

the same position, which is around 0.25. The principle that the local maxima109

of ∆e functions move very little from iteration to iteration also applies to other110

cases. We refer to these local maxima as key knots, and we will use this principle111

in our new knot positioning methods.112

4.2. Hill climbing method113

In this section, we introduce the hill climbing method for MARS knot po-114

sitioning [17]. If a function is concave, then hill climbing will find a global115

maximum, if one exists. However, the ∆e function may not be concave, so we116

require multiple starting points to get closer to the global maximum, as shown117

in Figure 7.118

Figure 7 shows how the hill climbing method works on an example ∆e func-119

tion, where the vertical axis is the ∆e value and the horizontal axis is the knot120

value. Suppose S0, S1, and S2 are three candidate knot positions that are arbi-121
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Figure 7: Illustration of the hill climbing method

trarily chosen from the candidate knot set (line 5 in Algorithm 1). If we start122

from S0, S1, and S2 and try to maximize ∆e, then we will end with knot values123

M0, M1, and M2, respectively. Only the knot values in [S0, M0], [S1, M1] and124

[S2, M2] will be traversed, and the other knot values in the domain of ∆e will125

be ignored, so using hill climbing methods will speed up the knot positioning126

process by reducing the search process.127

The starting points play an important role in the hill climbing method, which128

heavily affects the convergence speed and the last achieved optimum value. If129

the starting points are very close to a local maximum, the optimization process130

will end up at a local optimum, as shown in Figure 7 where we are trying to131

maximize ∆e. Fortunately, by exploring ∆e functions of different datasets, we132

find that the current key knots move a little from the prior key knots. Intuitively,133

we can use the key knots from a prior iteration as the starting points of the134

current iteration. By doing experiments on different datasets, we find that it135

works the same way on other datasets. This pattern of the key knots’ changes136

can be helpful when a basis function is added using that x-variable.137

4.3. Hill climbing method without using prior change in RSS information for138

MARS knot positioning139

The first new method we propose for MARS knot positioning is a general140

hill climbing method with multiple starting points, called HCM. The HCM141

algorithm starts with multiple starting points and converges to the local maxima142

of ∆e. Then the knot with the largest ∆e from the local maxima is chosen as143
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Figure 8: Illustration of candidate knots

the new knot to be added to the MARS model.144

Algorithm 2 shows the HCM knot positioning algorithm. The initial step145

in line 2 sorts the candidate knots in ascending order, and the knots are ref-146

erenced by their ordered knot index. An positive integer step size r is defined147

to increment the knot index, which allows the algorithm to traverse the can-148

didate knots. As recommended by Friedman [1], candidate knots are located149

only at data values. Figure 8 is an illustration of candidate knots for x1. If the150

current knot index is 4 (knot value, -0.32) and the next knot index is 6 (knot151

value, 0.23), then r = |6 − 4| = 2. When r takes a large number, the knot152

positioning process will converge fast, but it is not stable because it may skip153

and miss an optimal knot. When r takes a small number, the knot selection154

process will converge slowly but is stable. Line 5 in Algorithm 2 follows the155

original MARS algorithm to define the potential candidate knot set for Bm(xj)156

for the v-th input variable. In Algorithm 2, we refer to this set as Φ. Let157

Φ = {−0.81,−0.7,−0.6,−0.32, 0.01, 0.23, 0.46, 0.55, 0.68, 0.76} as shown in Fig-158

ure 8. The starting knot set is ΦS, where S is the knot index set of the starting159

knots, and we generate ΦS by taking equally indexed knots for a given starting160

knot number. As shown in Figure 8, if the starting knot number is 3, then S161

can be {1, 5, 9} and ΦS is {−0.81, 0.01, 0.68}.162

Lines 8 to 30 conduct HCM, which starts from each starting knot value in163

ΦS. Line 9 obtains a starting knot value ts, and line 10 calculates the new164

MARS model with two new basis functions by using the new knot value ts.165

Line 11 calculates the es value, where es is the RSS value for the new MARS166

model by using knot value ts. From lines 12 to 20, knots are traversed to the167

left of the starting knot, while from lines 21 to 29, knots are traversed to the168

right of the starting knot. As illustrated in Figure 8, if ts is 0.01, the knots to169

the left are {−0.7,−0.6,−0.32} and the knots to the right are {0.23, 0.46, 0.55}.170
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In line 12, when traversing knots to the left of ts, the knot index s− is initialized171

to s, and the current e for knot Φ[s−] is ec. In line 14, the e value ec for the172

prior knot becomes the prior e value eP for the current knot. Line 15 updates173

the information on the best knot. Line 16 moves the current knot index to the174

left by r and updates the current knot value t to Φ[s−]. Lines 17 and 18 update175

the MARS model with the current knot and calculate the e value ec for the176

current knot. Line 19 calculates the decrease in e value ∆e. If ∆e is greater177

than a predefined small positive scalar ε, the current knot index will move to178

the left by r and repeat line 14 to 19 again. Otherwise, the algorithm will stop179

traversing to the left and will begin traversing to the right of the starting knot180

Φ[s], and in this case, the process will skip a part of knots and save time. Lines181

22 to 29 traverse knots to the right of the starting knot Φ[s]. The knot sets182

ΦS divides the whole searching space into intervals, and if a knot t has already183

been traversed, the current search stops.184

4.4. Hill climbing method using prior change in RSS information for MARS185

knot positioning186

In HCM, all candidate knots are equally likely to be chosen for the starting187

point set. As was shown earlier in Figure 6 shows that the local optima do not188

move much from iteration to iteration and the local optima should be considered189

with much higher priority [18]. The second new method is a hill climbing method190

using the prior ∆e information (PHCM), where the starting point set consists191

of the key knots from the prior iteration. By exploring the ∆e function in192

Section 4.2, we find that local maxima from the prior iteration are usually near193

those of the current iteration, so we expect PHCM to converge faster than HCM.194

The difference between HCM and PHCM is how to determine ΦS. In HCM,

ΦS is generated by taking equally indexed knots for all iterations in Algorithm 2

line 7. In PHCM, for the first iteration, all candidate knots are chosen as ΦS,

and for the other iterations, ΦS is the local maxima set of ∆e identified in the
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Algorithm 2: HCM method for MARS knot positioning

Data: x, y,Mmax, ε, r
Result: MARS regression model f̂(x)

1 B1(x) = 1,M = 1, e∗ =∞
2 sort {xj,v} → {x(j),v} ascending
3 while M < Mmax do
4 for m = 1 toM do

5 for v /∈ {v(k,m)}Km
k=1 do

6 Φ = {xj,v|Bm(xj) > 0}Nj=1

7 random ΦS ⊆ Φ
8 foreach ts ∈ ΦS do
9 t = ts (ts = Φ[s])

10 f̂ =
∑M−1

i=1 aiBi(x) + aM+1Bm(x)[+(xv − t)]+ +
aM+2Bm(x)[−(xv − t)]+

11 es = mina1,...,aM+2 e(f̂)
12 s− = s, ec = es
13 do
14 ep = ec
15 if ep < e∗ then e∗ = ep,m

∗ = m, v∗ = v, t∗ = t
16 s− = s− − r, t = Φ[s−]

17 f̂ =
∑M−1

i=1 aiBi(x) + aM+1Bm(x)[+(xv − t)]+ +
aM+2Bm(x)[−(xv − t)]+

18 ec = mina1,...,aM+2 e(f̂)
19 ∆e = ep − ec
20 while ∆e > ε
21 t = ts, s+ = s, ec = ets
22 do
23 ep = ec
24 if ep < e∗ then e∗ = ep,m

∗ = m, v∗ = v, t∗ = t
25 s+ = s+ + r, t = Φ[s+]

26 f̂ =
∑M−1

i=1 aiBi(x) + aM+1Bm(x)[+(xv − t)]+ +
aM+2Bm(x)[−(xv − t)]+

27 ec = mina1,...,aM+2 e(f̂)
28 ∆e = ep − ec
29 while ∆e > ε

30 end

31 end

32 end
33 BM+1(x) = Bm∗(x)[+(xv∗ − t∗)]+
34 BM+2(x) = Bm∗(x)[−(xv∗ − t∗)]+
35 M = M + 2

36 end

17



prior iteration. For example as shown in Figure 8, in the first iteration for x1,

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},

ΦS = {−0.81,−0.7,−0.6,−0.32, 0.01, 0.23, 0.46, 0.55, 0.68, 0.76},
(15)

and for the second iteration for x1,

S = {3, 9},

ΦS = {−0.6, 0.68}.
(16)

In this way, PHCM converges faster to the local maxima, so PHCM has supe-195

riority in dealing large datasets.196

5. Experiments and results197

In this section, we test the MARS knot selection method from Chen et al.198

[10] and our new methods, HCM and PHCM, on different datasets with varying199

noise levels.200

5.1. Exploration of candidate knot numbers201

In this section, the MARS knot selection method from Chen et al. [10] (CM),202

HCM, and PHCM methods are applied to six datasets under different candidate203

knot number settings, 10, 30, 50, 100, 200, 500 and 1000. Table 1 summarizes204

the training and testing R2 results on dataset D1 under different candidate knot205

number settings, 10, 30, 50, 100, 200, 500 and 1000. Let R2
P , R2

H , and R2
C be206

the coefficients of determination for the PHCM method, the HCM method, and207

the knot positioning method from Chen et al. [10], respectively, where a higher208

R2 indicated a better fit to the data. The number of candidate knot number is209

denoted as Nk.210

From Table 1, we can see that as the candidate knot number increases, the211

R2 value is going up. The table also shows there is no significant R2 difference212

between training and testing dataset, so overfitting is not a problem. However,213
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Table 1: R2 comparison on dataset D1 over different candidate knot numbers: training vs
testing

Noise Nk 10 30 50 100 200 500 1000

0%

Train
R2

C 0.769 0.809 0.860 0.871 0.884 0.920 0.941
R2

H 0.781 0.799 0.846 0.860 0.882 0.912 0.938
R2

P 0.769 0.805 0.860 0.870 0.884 0.920 0.940

Test
R2

C 0.738 0.780 0.832 0.840 0.855 0.892 0.913
R2

H 0.752 0.769 0.817 0.829 0.852 0.883 0.910
R2

P 0.738 0.775 0.832 0.841 0.855 0.892 0.914

5%

Train
R2

C 0.769 0.825 0.834 0.854 0.880 0.895 0.909
R2

H 0.760 0.814 0.830 0.842 0.862 0.875 0.902
R2

P 0.769 0.816 0.832 0.852 0.880 0.895 0.906

Test
R2

C 0.742 0.799 0.808 0.829 0.856 0.872 0.886
R2

F 0.734 0.789 0.806 0.817 0.838 0.851 0.877
R2

P 0.742 0.790 0.807 0.827 0.856 0.872 0.883

10%

Train
R2

C 0.769 0.816 0.831 0.843 0.853 0.869 0.891
R2

H 0.766 0.813 0.825 0.836 0.847 0.861 0.875
R2

P 0.769 0.804 0.831 0.838 0.853 0.869 0.890

Test
R2

C 0.750 0.794 0.812 0.824 0.834 0.851 0.873
R2

F 0.746 0.790 0.805 0.816 0.827 0.842 0.856
R2

P 0.750 0.785 0.812 0.819 0.834 0.851 0.870

20%

Train
R2

C 0.761 0.792 0.802 0.825 0.834 0.860 0.887
R2

F 0.759 0.786 0.800 0.816 0.830 0.857 0.884
R2

P 0.761 0.792 0.802 0.822 0.834 0.860 0.887

Test
R2

C 0.744 0.776 0.794 0.808 0.817 0.844 0.872
R2

F 0.741 0.768 0.793 0.798 0.814 0.840 0.870
R2

P 0.744 0.776 0.794 0.805 0.817 0.844 0.872

the computational time is also going up with the candidate knot number in-214

creasing. Under the same candidate knot number settings, the R2 values for the215

CM method, the HCM method, and the PHCM method are almost the same.216

Let TC denote the computational time for CM method, TH for HCM method

and TP for PHCM method. The compuational time ratio of three methods are

defined as follows:

Computation time ratio of CM =
TC
TC

= 1 (17)

Computation time ratio of HCM =
TH
TC

(18)

Computation time ratio of PHCM =
TP
TC

. (19)

The computational time of CM method is the benchmark. If the computational217

time is less than 1, it implies that the methods uses less computational time218
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than CM method.219

Figures 9, 10 and 11 summarize the computational time ratios of three meth-220

ods on datasets D6, D1 and D5 under different candidate knot number settings.221

The input variable x for D6 is 2 dimensional, x for D1 is 7 dimensional and222

x for D5 is 20 dimensional. Under most cases, the HCM and PHCM meth-223

ods used less computational time than CM method. The ratio of HCM over224

different candidate knot numbers remained relatively stable compared to the225

ratio of PHCM, around 0.60 to 0.70, which indicates only 60% to 70% of the226

computational time of CM method was used in HCM method. The ratio of227

PHCM on D1 dropped dramatically with increasing candidate knot numbers228

from 0.80 to 0.25, which indicates that the PHCM method used about 80% of229

the computational time of CM method when the candidate knot number was230

10, and 25% of the CM computational time when the candidate knot number231

was 1000. The ratio for PHCM is going down when the candidate knot number232

increases, which means PHCM is more computationally efficient when dealing233

with a large size dataset. The figures also show that the proposed methods234

HCM and PHCM can perform very well with different levels of noise.235

5.2. Exploration of different datasets236

In this section, we tested our methods on six different datasets with the237

candidate knot number setting being 1000. The CM method, the HCM method,238

and the PHCM method are used on these six datasets.239

Table 2 summarizes the R2 values of three methods on six different datasets240

under four levels of noises. Under the same settings, the final achieved R2
241

are almost the same. It also shows there is little difference in R2 between the242

training set and the testing set, so no overfitting is again not a problem..243

Figure 12 is the comparison of the computational time ratios of three meth-244

ods on six different datasets. Comparing datasets with different dimensions, we245

saw that for datasets with 7, 10, 10, and 20 dimensions, the PHCM method has246

dramatically lower computational time ratio than HCM method. For datasets247

with 2 dimensions, the differences in the ratio are not as dramatic as those for248
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Figure 9: Computational time ratios of three methods on D6 under different knot number
settings with four noise levels: x is 2 dimensional
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Figure 10: Computational time ratio of three methods on D1 under different knot number
settings with four noise levels: x is 7 dimensional
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Figure 11: Computational time ratios of three methods on D5 under different knot number
settings with four noise levels: x is 20 dimensional

Table 2: R2 comparison on six different datasets: training vs testing

Noise
f(x) D1 D2 D3 D4 D5 D6

Nk 1000 1000 1000 1000 1000 1000

0%

Train
R2

O 0.941 0.999 0.999 0.999 0.944 0.971
R2

H 0.938 0.999 0.999 0.999 0.945 0.971
R2

P 0.940 0.999 0.999 0.999 0.943 0.971

Test
R2

O 0.913 0.994 0.999 0.998 0.940 0.946
R2

H 0.910 0.994 0.999 0.998 0.936 0.946
R2

P 0.914 0.999 0.999 0.998 0.932 0.946

5%

Train
R2

O 0.909 0.995 0.993 0.996 0.935 0.952
R2

H 0.902 0.995 0.993 0.996 0.935 0.953
R2

P 0.906 0.995 0.993 0.996 0.940 0.952

Test
R2

O 0.886 0.991 0.992 0.995 0.940 0.929
R2

H 0.877 0.991 0.999 0.995 0.940 0.927
R2

P 0.883 0.998 0.999 0.995 0.938 0.929

10%

Train
R2

O 0.891 0.985 0.973 0.991 0.933 0.906
R2

H 0.875 0.985 0.973 0.991 0.933 0.906
R2

P 0.890 0.985 0.973 0.991 0.933 0.906

Test
R2

O 0.873 0.989 0.953 0.997 0.918 0.897
R2

H 0.856 0.989 0.953 0.997 0.918 0.897
R2

P 0.870 0.989 0.949 0.997 0.930 0.890

20%

Train
R2

O 0.887 0.948 0.898 0.965 0.904 0.794
R2

H 0.884 0.948 0.898 0.965 0.904 0.794
R2

P 0.887 0.948 0.898 0.965 0.903 0.794

Test
R2

O 0.872 0.955 0.895 0.950 0.909 0.778
R2

H 0.870 0.955 0.896 0.950 0.908 0.778
R2

P 0.872 0.951 0.897 0.950 0.910 0.778
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Figure 12: Computational time ratios of three methods on six datasets with different dimen-
sions under four noise levels

high dimensional datasets. The phenomenon indicates that PHCM should be249

the preferred method for high-dimensional data.250

6. Conclusion251

In this paper, we proposed two new methods for MARS knot positioning,252

the hill climbing method (HCM) and the hill climbing method using key knots.253

The HCM and PHCM achieved a reduction in computational time compared254

to CM, while maintaining similar quality of fit. The PHCM achieved the most255

significant savings with over 80% reduction in computational time for the higher-256

dimensional data sets. By using different datasets with different noise levels, we257

show that PHCM and HCM are robust dealing with noisy datasets.258
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Appendix A. Other results tables and charts262

Table A.3 summarizes the training results on dataset D1 under different263

candidate knot number settings, 10, 30, 50, 100, 200, 500 and 1000. Define Nk264

to be the number of candidate knots. Let NC be the total number of knots in265

which ∆e was calculated using the CM, NH be that using the HCM, and NP266

be that using the PHCM, where fewer calculated ∆e values usually result in a267

lower computational time. Let RP be the ratio of NP to NC , and RH be the268

ratio of NH to NC , where a lower ratio indicates lower computational effort.269

Let R2
P , R2

H , and R2
C be the coefficients of determination for the PHCM, the270

HCM, and the CM, respectively, where a higher R2 indicated a better fit to the271

data. Let T be the computational time in seconds of the MARS algorithm with272

TP for the PHCM, TH for the HCM, and TC for the CM.273

We also tested our methods on six different datasets with the candidate274

knot number setting being 1000. The CM method, the HCM method, and the275

PPHCM method are used on these six datasets.276

Table A.4 summarizes the training results on six different datasets with the277

candidate knot number setting being 1000.278
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Table A.3: Comparison of three methods on dataset D1 over different candidate knot numbers:
training results

Noise Nk 10 30 50 100 200 500 1000

0%

NC 17,197 53,675 93,610 181,336 370,894 1,086,174 2,090,062
NH 12,521 33,630 58,586 119,062 242,323 656,259 1,339,374
NP 13,032 31,134 46,381 69,180 130,477 320,969 590,287
RH 0.73 0.63 0.63 0.66 0.65 0.60 0.64
RP 0.76 0.58 0.50 0.38 0.35 0.30 0.28
R2

C 0.769 0.809 0.860 0.871 0.884 0.920 0.941
R2

H 0.781 0.799 0.846 0.860 0.882 0.912 0.938
R2

P 0.769 0.805 0.860 0.870 0.884 0.920 0.940
R2

aC 0.744 0.790 0.845 0.853 0.873 0.913 0.936
R2

aH 0.757 0.778 0.830 0.843 0.872 0.905 0.932
R2

aP 0.744 0.785 0.845 0.842 0.873 0.913 0.929
TC 3.40 7.94 13.27 24.36 46.60 146.38 259.29
TH 2.85 4.96 8.06 15.66 30.72 87.61 165.16
TP 2.90 5.11 6.89 9.72 16.77 42.01 70.25

5%

NC 17,282 56,015 86,755 192,700 348,157 869,325 1,988,368
NH 12,610 35,746 56,893 125,606 218,216 535,707 1,266,933
NP 13,110 31,609 42,310 82,831 121,907 257,309 518,964
RH 0.73 0.64 0.66 0.65 0.63 0.62 0.64
RP 0.76 0.56 0.49 0.43 0.35 0.30 0.26
R2

C 0.769 0.825 0.834 0.854 0.880 0.895 0.909
R2

H 0.760 0.814 0.830 0.842 0.862 0.875 0.902
R2

P 0.769 0.816 0.832 0.852 0.880 0.895 0.906
R2

aC 0.743 0.807 0.818 0.835 0.868 0.875 0.900
R2

aH 0.740 0.794 0.811 0.831 0.846 0.865 0.881
R2

aP 0.743 0.801 0.815 0.833 0.865 0.874 0.897
TC 3.46 8.51 11.54 26.94 45.66 102.34 259.35
TH 2.85 5.62 7.84 17.09 27.10 62.49 166.78
TP 3.07 5.31 6.02 11.99 15.88 40.25 59.66

10%

NC 17,222 52,221 85,520 188,521 381,650 879,351 1,336,330
NH 13,084 33,790 53,963 113,931 253,330 585,591 909,954
NP 12,965 29,753 42,885 78,657 136,553 275,360 341,559
RH 0.76 0.65 0.63 0.60 0.66 0.67 0.68
RP 0.75 0.57 0.50 0.42 0.36 0.31 0.26
R2

C 0.769 0.816 0.831 0.843 0.853 0.869 0.891
R2

H 0.766 0.813 0.825 0.836 0.847 0.861 0.875
R2

P 0.769 0.804 0.831 0.838 0.853 0.869 0.890
R2

aC 0.744 0.796 0.814 0.826 0.838 0.857 0.880
R2

aH 0.741 0.793 0.811 0.821 0.833 0.852 0.861
R2

aP 0.744 0.784 0.814 0.823 0.838 0.857 0.878
TC 3.49 7.72 11.85 26.70 51.18 110.18 253.85
TH 2.54 5.26 9.25 15.57 32.21 70.33 155.65
TP 2.95 4.90 6.19 10.87 18.10 33.66 55.67

20%

NC 17,762 50,280 84,420 172,248 354,203 799,428 1,755,070
NH 12,856 34,745 61,390 94,171 237,130 497,342 1,246,389
NP 13,976 29,537 43,982 74,961 128,663 254,856 514,569
RH 0.72 0.69 0.73 0.55 0.67 0.62 0.71
RP 0.79 0.59 0.26 0.44 0.36 0.32 0.29
R2

C 0.761 0.792 0.802 0.825 0.834 0.860 0.887
R2

H 0.759 0.786 0.800 0.816 0.830 0.857 0.884
R2

P 0.761 0.792 0.802 0.822 0.834 0.860 0.887
R2

aC 0.735 0.771 0.790 0.805 0.818 0.848 0.877
R2

aH 0.733 0.770 0.789 0.792 0.820 0.844 0.874
R2

aP 0.735 0.771 0.787 0.801 0.821 0.851 0.877
TC 3.56 7.70 10.16 23.13 47.44 83.5 199.02
TH 2.98 5.35 8.58 11.95 29.76 52.94 141.16
TP 3.21 4.85 5.99 10.34 16.48 27.61 57.05
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Table A.4: Result comparison of three methods on six different datasets: training results

Noise
D1 D2 D3 D4 D5 D6

Nk 1000 1000 1000 1000 1000 1000

0%

NC 2,090,062 11,051,248 10,871,840 376,966 12,382,743 353,038
NH 1,339,374 7,581,651 8,527,864 275,526 9,603,147 265,990
NP 590,287 2,806,414 2,773,136 240,948 2,290,161 231,107
RH 0.64 0.69 0.78 0.73 0.78 0.75
RP 0.28 0.25 0.26 0.64 0.18 0.65
R2

C 0.941 0.999 0.999 0.999 0.944 0.971
R2

H 0.938 0.999 0.999 0.999 0.945 0.971
R2

P 0.940 0.999 0.999 0.999 0.943 0.971
R2

aC 0.936 0.999 0.999 0.999 0.938 0.970
R2

aH 0.932 0.999 0.999 0.999 0.940 0.970
R2

aP 0.929 0.999 0.999 0.999 0.938 0.970
TC 259.29 1149.26 960.37 30.36 1340.91 28.20
TH 165.16 755.43 758.20 22.48 1052.71 21.10
TP 70.25 273.41 224.10 19.48 235.69 19.00

5%

NC 1,988,368 10,710,274 7,174,956 319,140 12,515,344 361,014
NH 1,266,933 7,404,639 5,800,284 220,277 9,540,538 269,215
NP 518,964 2,621,238 1,712,336 203,052 2,208,984 236,997
RH 0.64 0.69 0.81 0.69 0.76 0.75
RP 0.26 0.24 0.24 0.64 0.18 0.66
R2

C 0.909 0.995 0.993 0.996 0.935 0.952
R2

H 0.902 0.995 0.993 0.996 0.935 0.953
R2

P 0.906 0.995 0.993 0.996 0.940 0.952
R2

aC 0.900 0.995 0.992 0.996 0.929 0.949
R2

aH 0.881 0.995 0.992 0.996 0.929 0.950
R2

aP 0.897 0.995 0.992 0.996 0.933 0.949
TC 259.35 1096.25 648.71 25.68 1406.60 29.33
TH 166.78 749.59 574.37 17.52 1028.94 21.80
TP 59.66 254.78 146.67 16.47 225.57 20.36

10%

NC 1,336,330 9,364,412 5,505,934 377,963 12,363,800 325,122
NH 909,954 6,365,090 4,421,255 268,752 9,462,023 242,482
NP 341,559 2,264,578 1,360,088 240,343 2,202,486 208,351
RH 0.68 0.68 0.80 0.71 0.77 0.75
RP 0.26 0.24 0.25 0.64 0.18 0.64
R2

C 0.891 0.985 0.973 0.991 0.933 0.906
R2

H 0.875 0.985 0.973 0.991 0.933 0.906
R2

P 0.890 0.985 0.973 0.991 0.933 0.906
R2

aC 0.880 0.984 0.971 0.990 0.927 0.900
R2

aH 0.861 0.984 0.971 0.990 0.927 0.900
R2

aP 0.878 0.984 0.970 0.990 0.926 0.900
TC 253.85 1051.80 525.21 31.62 1368.79 25.20
TH 155.65 676.18 436.86 22.11 1015.08 19.28
TP 55.67 230.08 120.25 19.78 222.06 16.64

20%

NC 1,755,070 6,510,958 4,491,985 411,861 11,454,536 331,104
NH 1,246,389 4,458,339 3,600,931 313,356 8,692,736 242,237
NP 514,569 1,477,733 1,061,862 280,717 1,987,142 213,803
RH 0.71 0.68 0.80 0.76 0.76 0.73
RP 0.29 0.23 0.24 0.68 0.17 0.65
R2

C 0.887 0.948 0.898 0.965 0.904 0.794
R2

H 0.884 0.948 0.898 0.965 0.904 0.794
R2

P 0.887 0.948 0.898 0.965 0.903 0.794
R2

aC 0.877 0.942 0.887 0.963 0.894 0.781
R2

aH 0.874 0.942 0.887 0.963 0.894 0.781
R2

aP 0.877 0.942 0.887 0.963 0.893 0.781
TC 199.02 772.69 418.99 33.97 1243.55 26.18
TH 141.16 526.57 340.56 25.89 922.75 19.42
TP 57.05 158.24 92.90 23.50 195.84 17.24
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Figure A.13: Computational time ratios of three methods on D2 under different knot number
settings with four noise levels: x is 10 dimensional
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Figure A.14: Computational time ratios of three methods on D3 under different knot number
settings with four noise levels: x is 10 dimensional
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Figure A.15: Computational time ratios of three methods on D3 under different knot number
settings with four noise levels: x is 2 dimensional
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