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ABSTRACT This research describes a real-time optimization model for multi-agent demand response (DR) 
from a Load Serving Entity (LSE) perspective. We consider three major categories of customers and five 
types of energy resources simultaneously to achieve efficient DR decision making in highly stochastic future 
energy markets. We formulate two infinite horizon stochastic optimization models; specifically, an LSE 
model and a dynamic pricing customer model. The objective of these models is to minimize long-term cost 
and discomfort penalty of the LSE and dynamic pricing customers. Because preferences of these two agents 
are different, they are inseparable and difficult to solve. We solve a deterministic finite horizon linear program 
as an approximation of the suggested stochastic model and provide computational experiments.  

INDEX TERMS Demand-side management, dynamic pricing customers, linear programming, multi-agent 
demand response, smart grid.

I. INTRODUCTION 
Although the current electric distribution and management 
system has been relatively constant and stable for many 
decades, recent advancements may fundamentally change 
the design and operation of the electric system and create 
new challenges to the existing power supply management. 
These transformations include more renewable energy 
resources in the bulk power system, proliferation of 
distributed energy resources (DERs) of various capacities in 
both transmission and distribution systems, increased 
installations of local renewable resources at end-use points, 
and rapid growth of transportation electrification (e.g., 
Electric Vehicles-EVs) at end users [1]–[13]. Of particular 
concern is rapid growth in the use of intermittent renewable 
energy resources in both the bulk power system and at end-
use points served by distribution systems [14]. According to 
the U.S. Department of Energy (DOE) forecast, renewable 
energy will provide at least 20% of the U.S. electricity 
market by 2030 [15]. Because of the current trends with 
renewables and their rapidly falling costs, most recent clean 
energy initiatives aim to achieve a much higher share of 
renewable energy in strategic plans. For instance, the Clean 
Energy Act of California aims to achieve 50% penetration of 
renewable energy by 2030 [16]. However, renewable energy 

introduces high stochasticity in the future energy market. We 
expect the potentially high penetration of wind and solar 
resources, as well as customer-installed generation and 
storage operated autonomously, to cause serious problems of 
intermittent shortage or overproduction that far exceed the 
capability of the current electric distribution systems [9], 
[11], [17]–[19]. This emerging issue of intermittent shortage 
or overproduction is critical mainly because the key 
differentiator of the electricity system compared to other 
commodities is that electricity distributors must balance 
supply and demand across the entire grid in real time [13].  
Although many groups have widely studied residential 
demand response, most of the current approaches and 
solutions actually target certain demand response (DR) sub-
problems restricted to some specific types of customers, 
specific types of control mechanisms, price strategies, or 
forecasting of demand response and energy market price. 
Some studies have focused on an integrated and complete 
functioning platform for residential DR Load Serving Entity 
(LSE) to handle massive market and customer information 
and optimize decision making. They have strived for a 
realistic operating scenario in which DR LSE will most 
likely meet in the future smart grid market. We particularly 
design this research to bridge the knowledge gap and to 
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develop a model for residential DR LSE. Our approach 
incorporates a complete portfolio of future potential end-user 
customers, including all three major customer groups: fixed-
pricing, direct load control, and dynamic pricing customers. 
A summarized discussion of each is below.  

A. FIXED-PRICING CUSTOMERS (FPC) 
In fixed-pricing programs, the utility offers electricity at a 
fixed rate regardless of the day-ahead or real-time market 
prices, so the price remains stable throughout the length of the 
contract [45]. We expect that these kinds of customers remain 
a considerable portion of the customers, and we will need to 
consider them in future demand response decisions.  

B. DIRECT LOAD CONTROL CUSTOMERS (DLCC) 
In direct load control programs, the LSE or aggregator has 
remote control over certain appliances of the customers based 
on a customer agreement. For example, they may turn off and 
on the air conditioner, dishwasher, EV charger, and pumps 
[20], [21]. There is much research focusing on DLCC, such as 
[22]–[25]. 

C. DYNAMIC PRICING CUSTOMERS (DPC) 
In dynamic pricing programs, also known as real-time pricing 
or time-varying programs, we assume that each customer has 
access to the real-time wholesale market price and responds 
individually to the time-differentiated prices by shifting his 
load [26]–[28]. We assume that residential customers have 
smart meters in their houses that simply control their 
consumptions by an algorithm. It can have the current price 
and a forecasted trajectory of the price. Based upon this 
information, the device might delay some level of operation of 
appliances such as an air conditioner or dishwasher.  

We organize the remainder of this paper as follows. Section 
2 summarizes background and literature on demand response 
programs and our contributions. Section 3 reviews energy 
resources for both the LSE and DPCs. Section 4 includes 
mathematical formulations of the LSE and DPC models. 
Section 5 describes computational experiments for a 
deterministic problem of the suggested model. Finally, Section 
6 derives the conclusions and future work. 

II. LITERATURE REVIEW 
We recognize smart grids for their competencies and related 
advantages. However, we require a great deal more to 
transform smart grids into actuality [29]. With the 
development of technology and communications, advanced 
metering systems and energy management provide a more 
active participation of customer demand in power systems. 
Based upon these advancements, DR is proposed to deal with 
this relationship between customers and the power system. 
These DR programs are different from the current electricity 
usage situation, since most customers pay only a flat electricity 
price and have no incentive to change their electric usage in 
response to prices [30]. Therefore, the main objective of DR 

programs is to offer incentives to customers who reduce 
energy usage at peak demand times [31]. With this, DR 
mitigates market power generation, reduce electricity prices, 
resolve transmission line congestion, enhance resilience of the 
power system, and improve market liquidity [32]. To improve 
the usage of DR programs, utilities should create more flexible 
DR resources to make these programs more attractive to 
customers; for example, they should focus more on price 
reduction and not just on system reliability [33].  

Researchers in the DR field have conducted many research 
projects [34]–[44]. We will review a few that pertain to our 
work. Li et al. [45] propose a DR model based on utility 
maximization. They assume households with different kinds 
of usage, like EVs and batteries. They consider dynamic 
pricing and claim that they can align individual optimality 
with social optimality. They suggest a joint algorithm for 
utility and residential customers. They also mention that by 
increasing the number of customers, the benefit of their 
algorithm increases but will ultimately saturate. Conejo et al. 
[46] build a real-time DR model to adjust the hourly load level 
of a given consumer by considering hourly electricity price. 
They use a simple linear programming algorithm to solve this 
model, and the case study results demonstrate that it is possible 
to achieve maximum utility for customers to use this proposed 
model. Pipattanasomporn et al. [47] propose another 
intelligent home energy management algorithm to manage 
power consumption of household appliances with DR 
analysis. Their simulation results demonstrate that this 
algorithm can control appliance operation and limit household 
power consumption below a certain demand.  

In these four research papers, the DR relationship is directly 
between the power system and its customers. However, in 
practice it is difficult to control and adjust a customer’s 
electricity usage directly from market level since the 
individual customer’s electricity usage has little effect on the 
overall power market, and the transaction cost of such direct 
control is excessive [48]. In 2008, Belhomme et al. [49] 
describe the ADDRESS European Commission project 
(“Active Distribution networks with integration of Demand 
and distributed energy RESourceS”) as building a 
comprehensive and commercial smart grid framework for the 
development of the “active demand” of residential customers. 
In this project, they introduce a new intermediary between the 
power system and local customers, called an aggregator [48].  

In Evens et al. [50], aggregators work with domestic small-
scale customers by aggregating flexible demand and 
generation of equipment such as electrical appliances, 
including air conditioners and washing machines, energy 
storage such as batteries, and distributed generation including 
solar panels and micro wind turbines, which they install on the 
customers’ premises. Angentis et al. [51] focus on the 
aggregator trying to maximize profit. Two terms compose the 
objective function: the first, earned income from selling 
energy on the market, and the second, the price paid to the 
consumers for their participation in this service. A mixed 
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integer linear programming (MILP) algorithm achieves the 
best outcome. Furthermore, to consider the customers’ energy 
usage, Angentis et al. [52] develop a model that optimally 
schedules appliances at the end users’ premises. They describe 
three goals in the objective function: overall cost, climate 
comfort level, and timeliness. They also assign weights to each 
of these three terms according to customer preferences. They 
solve this problem with an MILP algorithm, and the results 
show that this model can solve such problems efficiently. 
Parvania et al. [53] continue researching optimal demand 
response aggregation in a wholesale energy market. In their 
proposed framework, DR aggregators optimize the bids 
submitted to the wholesale market based on specific DR 
contracts for local customers in order to reduce energy usage, 
and then it uses a price-based self-scheduling model to 
determine an optimal schedule for the day-ahead energy 
markets. Ahmadi et al. [54] develop a linear program for 
optimizing direct control of a micro grid. They introduce an 
approach wherein consumer behavior shifts from passive 
customers to active customers and gives a suitable and 
dynamic system of load rescheduling hinging on customers’ 
precedence and load characteristics. They also define a 
controllability index to measure the performance of a micro 
grid on different levels of consumer flexibility. They conclude 
that the proposed framework determines an optimal load 
control strategy to balance electricity consumption, demand 
rescheduling, and selling electricity to the main grid.  

As a promising solution to achieve dynamic supply-demand 
balance, DR with dynamic pricing signals attracts great 
interest. It can shift peak consumption and allow higher 
flexibility to account for uncertainties in the energy market. 
Palensky and Dietrich [55] note that the existing demand 
response programs focus mainly on a small number of 
industrial and large commercial customers using DLCC and 
interruptible loads. Some researchers have conducted studies 
on residential DR with dynamic electricity pricing in recent 
years [56]–[58]. However, the current studies mostly target 
some specific sub-problems with a very restricted type of 
customer, control mechanisms, and pricing strategies. The less 
dynamic time-varying pricing structures have mostly adopted, 
for example, time of using pricing, critical peak pricing, and 
peak time rebates. These price structures define different 
electricity prices at different fixed periods of the day or year. 
High stochastic real-time dynamic pricing structures need 
more investigation to enable their great potential. Overall, the 
current DR management studies and methods are generally 
limited and are difficult to scale to handle future large numbers 
of small commercial and residential customers with different 
control and operation types, including DLCC, real-time 
dynamic pricing, and FPC. 
 
III. CONTRIBUTION 
To the best of our knowledge, at present, no DR management 
research simultaneously considers all three major categories 
of customers in achieving efficient real-time optimal DR 

decision making for large-scale end users in highly dynamic 
and stochastic future energy markets. This emerging problem 
of large-scale residential DR programs with the introduction 
of dynamic electricity pricing structures mixed with other 
traditional pricing types is extremely difficult, and currently 
less studied. The next generation of real-time DR management 
of large-scale residential end users is an urgent need and yet 
unsolved to achieve highly coordinated energy use and 
generation using market forces of dynamic power price signals 
in the face of future high penetration of renewable energy and 
DERs. This research aims at developing a comprehensive DR 
planning and operational optimization model. The LSE will 
use the developed optimization model to determine optimal 
DR control signals dynamically, based on forecasted market 
prices, renewable energy generation, storage, and aggregated 
demand flexibility. The proposed modeling and optimization 
architecture will influence the overall smart power system and 
its participants, particularly the LSEs, customers, and system 
operators. It could potentially optimize energy management at 
homes, businesses, and improve the control of distributed 
energy resources. 

IV. STOCHASTIC PROCESS 
Figure 1 presents the sequential two-agent stochastic process 
that we use in this research. The first step is to set the initial 
parameter values. We use battery specifications of [62] as a 
baseline for this paper. Some other parameter values are as 
follows. Battery inventory at the beginning and the end of the 
period is 20% of its capacity. The recapture rate is 75%, and 
recaptured demand needs to be satisfied within 16 periods, 4 
hours. Moreover, we assume the same portion of demand for 
all three types of customers.  

The second step is to forecast wind generation, solar 
photovoltaic generation, and market price. We use methods 
described in [62]–[64]. They used support vector regression to 
make predictions in a deregulated market. In addition, we take 
advantage of a Martingale Model Forecast Evolution (MMFE) 
to model the uncertainty of these forecasting models. We 
discuss these forecasts in more detail in Section VI. 

Then, to solve the LSE problem, we need to know how 
much electricity we should transfer to or from the DPC. So, 
we call the DPC model and solve it, and next send back the 
information to the LSE model. After solving the LSE model, 
we will have all decision variable values. The LSE will 
determine how to supply the power to the DLCC and would 
be reactive based upon the DPC and FPC. In addition, we 
update the battery storage for the next period. Mathematical 
descriptions of the LSE and DPC models are in Section VII. 

The fifth step is sampling. Like [61], we sample for wind, 
solar, and market price using SVR and MMFE to determine 
the realizations. When the uncertainty is revealed, we take 
advantage of recourse functions to adjust decision variable 
values.  

Therefore, we have enough information to calculate the LSE 
objective function in the sixth step. We of course use the 



 Alireza Fallahi et al.: Linear Programming for Multi-Agent Demand Response 

VOLUME XX, 2019  

adjusted decision variable values after the recourse functions. 
We repeat this algorithm from t = 1, …, T, which is 96 15-
minute periods, or 24 hours in simulation time. 

 
FIGURE 1. Sequential two-agent stochastic process. 

V. ENERGY RESOURCES 
We consider five types of energy resources for the LSE and 
three types for DPCs. Pre-purchased electricity, wind, solar, 
battery inventory, and the main grid are LSE resources. They 
are solar, battery inventory, and the grid for DPCs. 

The LSE has the ability to purchase the electricity in a day-
ahead market or through a long-term contract. We refer to this 
as pre-purchased electricity. In this research, we assume that 
it is the difference between a forecasted demand profile and 
renewable energy generation. Note that DPCs do not receive 
pre-purchased electricity.   

In October 2017, the installed capacity of wind farms in 
Texas surpassed 20,000 MW, the highest installed wind power 
capacity in the US, according to Electric Reliability Council 
of Texas (ERCOT). Texas achieved the Wind Penetration 
record of 54% on October 27, 2017. Approximately 17.4% of 
the energy used in ERCOT came from wind in 2017. We 
assume that the LSE has a contract with a wind farm (e.g., 30% 
of its wind energy production). We choose a nearby wind farm 
in Oklahoma with a 74.25-MW capacity for this research. We 
also assume that DPCs lack access to a wind farm. ERCOT 
provides our 15-min wind power data [65].      

Installed solar capacity in Texas exceeded 1,000 MW in 
October 2017, according to ERCOT [65]. We assume that 
both the LSE and DPCs have solar energy resources. The LSE 
can access a solar park, and the DPCs can have rooftop solar 
panels.  

Given [61], we estimate battery capacity to be 3.6 MWh per 
battery slot. We choose battery capacity and other battery 
specifications such as charging and discharging rates like [61]. 
The other assumption is that the LSE has ten battery slots, and 
DPCs cumulatively have five battery slots. 

Finally, the main grid is the other source of energy for both 
LSE and DPCs. They have the ability to buy electricity from 
the grid as needed. They also can sell the electricity to the grid 
when it is expensive or in excess. 

VI.  FORECASTING METHODS 
As mentioned in Section IV, we use methods described in 
[62]–[64] for forecasting market price, wind generation, and 
solar photovoltaic (PV) generation. For wind generation, we 
take into consideration factors including wind generation, 
wind speed, and relevant weather parameters, such as gusty 
wind, wind direction, and temperature as the input parameters. 
The final model that we use in this research consists of three 
predictors. They are wind generation at 15 and 30 min before 
prediction time and wind speed at 15 min before the 
prediction. Figure 1 shows the forecasted wind generation for 
the LSE in a one-day deterministic problem.  

For PV generation, these methods utilize factors as 
predictors, including historical PV generation, humidity, 
temperature, cloud rating, wind speed, and the previous day of 
sunshine. Their final model consists of three predictors: 
historical PV generation at 15 and 30 min before the prediction 
time and the previous day of sunshine. Figure 2 shows the 
forecasted solar generation for an assumed LSE in a one-day 
problem. 

FIGURE 2. Forecasted renewable energy. 

For market price, the final model consists of historical 
market price, temperature, and load profile at 15 and 30 min 
before the prediction time. 

VII. PROBLEM FORMULATION 
In this section, we present two infinite horizon stochastic 
programming models for LSE and DPCs. We use three terms 
to explain these models in a simpler way: recaptured demand, 
lost demand, and spilled demand. Recaptured demand is the 
deferred demand that we satisfy later. Examples are 
dishwasher and dryer loads. Lost demand is the eliminated 
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demand that the customer no longer needs in future periods. 
An example is air conditioner load. Spilled demand is the 
summation of the recaptured and lost demand.  

The first multi-stage model is the LSE stochastic 
optimization program for the real-time market. Table 1 lists 
the notation of the model parameters that we use throughout 
the article. Tildas denote uncertain stochastic parameters. 

TABLE 1. Model parameters. 

𝑟 Renewable energy generation 

𝑔 The main energy grid 

𝑏 Battery storage 

𝑑ଵ Load demand from DLCC 

𝑑ଶ Load demand from DPCs 

𝑑ଷ Load demand from FPC 

𝑡 Index for the time period, in which t = 0 is the current time period 

𝑇 A fixed set of time periods for which loads may be deferred for 

DLCC 

𝑐̃௧ Random variable for the real-time market price in time period 𝑡 

𝑟̃௧ Random variable for the LSE renewable generation in time 

period 𝑡 

𝑝௧ Pre-purchased electricity for time 𝑡 

𝛾 Discount factor 

𝑟̃௧஽௉஼ Random variable for the DPC renewable generation in time 

period 𝑡 

𝑑ሚ௧ଵ Random variable for the load demand from the DLCC in time 

period 𝑡 

𝑑ሚ௧ଷ Random variable for the load demand from the FPC in time 

period 𝑡 

𝑑௧ଶ The load demand from the DPCs, which is a function of 𝑟̃, 𝑐̃, as 

well as previous DPC load 𝑑ሚଶ 

𝑒௖ Battery charging efficiency rate 

𝑒ௗ Battery discharging efficiency rate 

𝑢௧௖ Upper limit on charging the battery in a period 

𝑢௧௢ Upper limit on discharging the battery in a period 

𝑙௕ Lower limit on the battery storage 

𝑢௕ Upper limit on the battery storage 

𝑙௧ௗ Lower limit on energy supplied to the DLCC in a period 

𝑢௧ௗ Upper limit on energy supplied to the DLCC in a period 

𝑝௧ The amount of previously purchased energy  

𝛥௧  The electricity exchange between the LSE and the DPCs at time 

t 

𝑎௧ The recapture rate  

𝑧௧௧̅ A discomfort penalty for recapturing load from time period t to 

time period 𝑡̅, for each 𝑡̅ =t,…, t+T 

Transferred electricity, battery inventory level, and 
recaptured demand are decision variables. Table 2 shows the 
notation description of these variables. 

TABLE 2. Decision variables. 

𝑥௧௚ௗ 
The amount of electricity transferred from the grid to demand 

at time t 

𝑥௧௚௕ 
The amount of electricity transferred from the grid to battery 

storage at time t 

𝑥௧௚஽௉஼ 
The amount of electricity transferred from the grid to the DPCs 

at time t 

𝑥௧௥ௗ 
The amount of electricity transferred from renewable 

generation to demand at time t 

𝑥௧௥௕ 
The amount of electricity transferred from renewable 

generation to battery storage at time t 

𝑥௧௥௚ 
The amount of electricity transferred from renewable 

generation to the grid at time t 

𝑥௧௥஽௉஼ 
The amount of electricity transferred from renewable 

generation to DPCs at time t 

𝑥௧௕௚ 
The amount of electricity transferred from battery storage to 

the grid at time t 

𝑥௧௕ௗ 
The amount of electricity transferred from battery storage to 

demand at time t 

𝑥௧௕஽௉஼ 
The amount of electricity transferred from battery storage to 

DPCs at time t 

𝑥௧௣௚ 
The amount of pre-purchased electricity transferred to the grid 

at time t 

𝑥௧௣௕ 
The amount of pre-purchased electricity transferred to the 

battery at time t 

𝑥௧௣ௗ 
The amount of pre-purchased electricity transferred to demand 

at time t 

𝑥௧௣஽௉஼ 
The amount of pre-purchased electricity transferred to the 

DPCs at time t 

𝐼௧ The battery inventory level at the beginning of time period t 

𝑑௧௧̅ଵ 
Recaptured demand from time period t to time period 𝑡̅ for the 

DLCC, for each time period 𝑡̅ =t,…, t+T 

𝑑௧̅௧ଵ 
Recaptured demand from time period 𝑡̅ to time period t for the 

DLCC, for each time period 𝑡̅ =t-T,…, t 

𝑑௧௧ଵ Satisfied demand for the DLCC at time t  

Figure 3 presents a flow chart showing demand, supply and 
their relationships for both the LSE and the DPCs. Because we 
have market price information every 15 min, we observe 15-
min intervals. In each interval, the state variable is the 
expected value. The objective is to minimize the long-term 
operational cost of the LSE and the discomfort penalty. The 
first part is the cost of buying from the grid for demand and 
battery storage, minus the revenue from selling back to the 
grid from renewable generation and battery storage. The 
second part of the following linear objective function shows 
the penalty function.   

min ෍ 𝛾 ൭𝑐̃௧൫𝑥௧௚ௗ
௔ ൅ 𝑥௧௚௕

௔ ൅  𝑥௧௚஽௉஼
௔ െ 𝑥௧௥௚

௔ െ 𝑥௧௕௚
௔ െ 𝑥௧௣௚

௔ െ 𝑥௧஽௉஼௚
௔  ൯

ஶ

௧ୀ଴

൅ ෍ ෍ 𝑧௧௧̅
௔  𝑑௧̅௧ଵ

௧

௧̅ୀ௧ି்

ஶ

௧ୀ଴

൱                                                                                            ሺ1ሻ 

One of the model parameters in the objective function (1) 
that shows customer flexibility is the waiting cost function, 
symbolized by 𝑧௧௧̅

௔ . Costs relative to rescheduling loads rise 
over time; consumers can bear short delays more readily than 
longer ones. Naturally, consumer frustration increases with 
waiting time. The waiting cost’s upper limit should reflect 
market price. Note that rescheduling is detrimental if the  
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FIGURE 3. Demand-supply flow chart 

waiting cost is too large. No low market price can compensate 
for an excessive waiting cost, and in such circumstances, 
rescheduling is not beneficial. There is a critical point within 
the waiting cost function at which rescheduling stops for all 
waiting costs above this point. 

In this example, no economic benefit can be found for load 
rescheduling when waiting costs exceed M = 4 ($/MWh). In 
this research, we choose a logarithmic function (2) through 
which the waiting cost function increases rapidly in early 
periods. We can easily substitute other kinds of cost functions, 
such as linear and exponential. For more information about 
different cost functions, refer to [54].  

𝑧௧௧̅
௔ ൌ ln ቆ

𝑡 െ 𝑡̅

𝑇
𝑒ெ ൅ 1 െ

𝑡 െ 𝑡̅

𝑇
ቇ        𝑡̅ ൌ 𝑡 െ 𝑇, … , 𝑡                                   ሺ2ሻ 

Energy storage is the first constraint set (3). It calculates the 
battery storage in time period t+1 considering the previous 
storage, inputs, and outputs to the battery. The assumed 
charging and discharging efficiency rates are 79.8% in the 
computational experiments, which is the same as that in [59]. 
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௔ ൌ 𝐼௧

௔ െ
 𝑥௧௕௚

௔ ൅  𝑥௧௕ௗ
௔ ൅  𝑥௧௕஽௉஼

௔  

𝑒ௗ
௔

൅ 𝑒௖
௔൫𝑥௧௥௕ 𝑥௧௥௕

௔ ൅  𝑥௧௚௕
௔ ൅ 𝑥௧௣௕

௔ ൅ 𝑥௧஽ை஼௕
௔ ൯   ∀𝑡

ൌ 0, …                                                                            ሺ3ሻ 

Renewable generation balance is the second constraint set 
(4). It is included to ensure that LSE renewable generation 
(𝑟̃௧

௔ሻ is equal to the transferred renewable generation to the 
grid, battery storage, demand, and the DPC. In addition, Pre-
purchased balance is the third constraint set (5).  

𝑟̃௧
௔ ൌ 𝑥௧௥௚

௔ ൅ 𝑥௧௥௕
௔ ൅ 𝑥௧௥ௗ

௔ ൅ 𝑥௧௥஽௉஼
௔   ∀𝑡 ൌ 0, …                                               ሺ4ሻ 

𝑝௧
௔ ൌ 𝑥௧௣௕

௔ ൅ 𝑥௧௣௚
௔ ൅ 𝑥௧௣ௗ

௔ ൅ 𝑥௧௣஽௉஼
௔    ∀𝑡 ൌ 0, …                                             ሺ5ሻ 

The fourth set of constraints (6) is for load supply-demand 
balance. The left side of the equation shows the total demand 
for the LSE. It is the demand of two kinds of customers, 
respectively, the DLCC, and the FPC. The right side shows the 
electricity transmitted to demand from renewable generation, 
the grid, battery storage, pre-purchased electricity, and the 
DPC surplus. 

෍ 𝑑௧̅௧ଵ

௧

௧̅ୀ௧ି்

൅ 𝑑ሚ௧ଷ ൌ 𝑥௧௥ௗ
௔ ൅ 𝑥௧௚ௗ

௔ ൅ 𝑥௧௕ௗ
௔ ൅ 𝑥௧௣ௗ

௔ ൅ 𝑥௧஽௉஼ௗ
௔   ∀𝑡 ൌ 0, …        ሺ6ሻ 

The fifth set of constraints shows the transferred electricity 
from the LSE to the DPC, 𝛥௧

ା, and the transferred surplus 
electricity from the  DPC to the LSE, 𝛥௧

ି.  
 
𝛥௧ ൌ 𝛥௧

ା െ 𝛥௧
ି   ∀𝑡 ൌ 0, …                                                                                  ሺ7ሻ 

𝛥௧
ା ൌ maxሺ𝛥௧, 0ሻ    ∀𝑡 ൌ 0, …                                                                           ሺ8ሻ 

𝛥௧
ି ൌ െ minሺ𝛥௧, 0ሻ    ∀𝑡 ൌ 0, …                                                                       ሺ9ሻ 

𝛥௧
ା൫𝑐̃, 𝑑ሚଶ, 𝑟̃൯ ൌ 𝑥௧௣஽௉஼

௔ ൅ 𝑥௧௕஽௉஼
௔ ൅ 𝑥௧௚஽௉஼

௔ ൅ 𝑥௧௥஽௉஼
௔     ∀𝑡 ൌ 0, …            ሺ10ሻ 

𝛥௧
ି൫𝑐̃, 𝑑ሚଶ, 𝑟̃൯ ൌ 𝑥௧஽௉஼௚

௔ ൅ 𝑥௧஽௉஼௕
௔ ൅  𝑥௧஽௉஼ௗ

௔    ∀𝑡 ൌ 0, …                              ሺ11ሻ 

Recaptured demand balance is the sixth set of constraints (12). 
It ensures that a fraction (𝑎௧

௔) of the amount of demand that is 
unsatisfied now must satisfy in future periods. We refer to this 
fraction as the recapture rate. We assume that the recapture 
rate is 75% in the computational experiments.  

෍ 𝑑௧௧̅ଵ

௧ା்

௧̅ୀ௧ାଵ

ൌ 𝑎௧
௔൫𝑑ሚ௧ଵ െ 𝑑௧௧ଵ൯  ∀𝑡 ൌ െ𝑇, …                                                    ሺ12ሻ 

Discharge rate limit and charge rate limit are the seventh set 
of constraints (13) and (14). Constraint set (13) ensures that 
the discharge of the battery in a period is limited to 𝑢௧௢

௔ . 
Constraint set (14) ensures that the charge of the battery in a 
period is limited to 𝑢௧௖

௔ .  

𝑥௧௕௚
௔ ൅ 𝑥௧௕ௗ

௔ ൅ 𝑥௧௕஽௉஼
௔ ൑ 𝑢௧௢

௔     ∀𝑡 ൌ 0, …                                                      ሺ13ሻ 

𝑥௧௥௕
௔ ൅ 𝑥௧௚௕

௔ ൅ 𝑥௧஽௉஼௕
௔ ൅ 𝑥௧௣௕

௔ ൑ 𝑢௧௖
௔     ∀𝑡 ൌ 0, …                                         ሺ14ሻ    

Storage limit constraints (15) enforce bounds on the battery 
storage.  

𝑙௕
௔ ൑ 𝐼௧

௔ ൑ 𝑢௕
௔    ∀𝑡 ൌ 0, …                                                                                ሺ15ሻ 

Constraint (16) shows that we assume the storage level at the 
last stage is the same as the storage level at the first stage.   

𝐼்
௔ ൌ 𝐼଴

௔                                                                                                                 ሺ16ሻ 

Constraint sets (17) and (18) support nonnegative supply and 
nonnegative recaptured load for the DLCC. 

𝑥௧
௔ , 𝛥௧

ା, 𝛥௧
ି ൒ 0    ∀𝑡 ൌ 0, …                                                                            ሺ17ሻ 
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𝑑௧௧̅ଵ ൒ 0   ∀𝑡̅ ൌ 𝑡, … , 𝑡 ൅ 𝑇 ;  ∀𝑡 ൌ 0, …                                                       ሺ18ሻ   

The second multi-stage model, shown in Table 3, is the 
DPC stochastic optimization program for the real-time market. 
For simplicity, we choose the parameters and decision 
variables of this model similar to the LSE model. Two new 
parameters are 𝑑̅௧ଶ and 𝑧௧̅. The first is the lost demand, and the 
second is a penalty for spilling load at time t. 

TABLE 3. The stochastic optimization model to estimate load demand 
for the DPC. 

Minimize long-term 
cost and discomfort 
penalty  

min ෍ 𝛾𝑐̃௧ሺ 𝑥௧௔ௗ
ௗ ൅ 𝑥௧௔௕

ௗ  െ 𝑥௧௥௔
ௗ  െ 𝑥௧௕௔

ௗ  ሻ
ஶ

௧ୀ଴

൅ ෍ ෍ 𝑧௧௧̅
ௗ  𝑑௧̅௧ଶ 

௧

௧̅ୀ௧ି்

ஶ

௧ୀ଴

൅ ෍ 𝑧௧̅
ௗ𝑑̅௧ଶ

ஶ

௧ୀ଴

 

Energy storage 𝐼௧ାଵ
ௗ

ൌ 𝐼௧
ௗ െ

 𝑥௧௕௔
ௗ ൅ 𝑥௧௕ௗ

ௗ  

𝑒ௗ
ௗ

൅ 𝑒௖
ௗ ሺ𝑥௧௥௕

ௗ ൅ 𝑥௧௔௕
ௗ ሻ 

∀𝑡 ൌ 0, … 

Renewable 
generation 

𝑟̃௧
ௗ ൌ 𝑥௧௥௔

ௗ ൅ 𝑥௧௥௕
ௗ ൅ 𝑥௧௥ௗ

ௗ  ∀𝑡 ൌ 0, … 

Load supply-
demand balance 

෍ 𝑑௧̅௧ଶ

௧

௧̅ୀ௧ି்
ൌ 𝑥௧௥ௗ

ௗ ൅ 𝑥௧௔ௗ
ௗ ൅ 𝑥௧௕ௗ

ௗ  

∀𝑡 ൌ 0, … 

Transferred From 
the LSE 

െ 𝛥௧
ି ൌ 𝑥௧௔ௗ

ௗ ൅ 𝑥௧௔௕
ௗ  ∀𝑡 ൌ 0, … 

Transfer to the LSE 𝛥௧
ା ൌ 𝑥௧௕௔

ௗ ൅ 𝑥௧௥௔
ௗ  ∀𝑡 ൌ 0, … 

Recaptured load 
demand ෍ 𝑑௧௧̅ଶ

௧ା்

௧̅ୀ௧

ൌ 𝑑ሚ௧ଶ െ 𝑑̅௧ଶ 
∀𝑡 ൌ െ𝑇, … 

Discharge rate limit 𝑥௧௕௔
ௗ ൅ 𝑥௧௕ௗ

ௗ ൑ 𝑢௧௢
ௗ  ∀𝑡 ൌ 0, … 

Charge rate limit 𝑥௧௥௕
ௗ ൅ 𝑥௧௔௕

ௗ ൑ 𝑢௧௖
ௗ  ∀𝑡 ൌ 0, … 

Storage limits 𝑙௕
ௗ ൑ 𝐼௧

ௗ ൑ 𝑢௕
ௗ ∀𝑡 ൌ 0, … 

Nonnegative supply 
and reduced load 𝑑̅௧ଶ, 𝑥௧

ௗ ൒ 0 ∀𝑡 ൌ 0, … 

Nonnegative 
recaptured loads 𝑑௧௧̅ଶ ൒ 0 

∀𝑡̅ ൌ 𝑡, … , 𝑡 ൅ 𝑇 
∀𝑡 ൌ 0, … 

Like the LSE model, the objective function and all 
constraints are linear. We link the LSE model and the DPC 
through the electricity exchange. The LSE model uses the 
electricity exchange, 𝛥௧, from the DPC as a parameter. 
Consequently, the DPC optimization model is solved first.  

If this two-agent model were separable, we could solve each 
agent separately and then combine the results. However, we 
see evidence that the problem is inseparable, implying that the 
LSE decisions regarding the DLCC depend upon the DPC 
decisions. Figure 4 shows an example how this two-agent 
problem is inseparable. Specifically, we solve deterministic 
problems for three cases: (1) all customers are DLC, (2) all are 
DPC, and (3) 50% are DLC and 50% are DPC. We can clearly 
see that the adjusted demand for the case of having a mix of 
50-50% does not provide an average of the two other cases. 
Examples are time intervals 44, 45, 55, 56, 66, 68–70. 

While solving this two-agent stochastic programming 
model as described is certainly difficult and beyond the scope 

of this paper, in the next section, we solve a deterministic 
problem to provide insight into the behavior of the system. 
 

FIGURE 4. Illustration of inseparable adjusted demand 

VIII. COMPUTATIONAL EXPERIMENTS 
In this section, we present results for solving the suggested 
model for one day (96 intervals; every 15 min) using 
MATLAB. Figure 5 shows demand and the DR adjusted 
demand profile for an assumed LSE in the Dallas/Fort Worth 
area in summer for every 15 minutes. We define DR adjusted 
demand as actual demand after solving the two-agent 
optimization problem. The difference between DR adjusted 
demand and demand is the spilled demand. The plot shows 
how this two-agent optimization problem affects the peaks and 
transfers some of the loads to the inexpensive periods. We 
assume that we divide the total demand evenly for each type 
of customer, 33% each.  

FIGURE 5. Demand profile 
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FIGURE 6. Demand pulled from different sources. 

Figure 6 shows the electricity that transfers to DLCC 
demand from the grid, renewable generation, battery storage, 
the pre-purchased electricity, and the DPC for a one-day 
deterministic problem. As we expect, pre-purchased and 
renewable electricity supplies most of the demand. It also 
shows that the grid supplies part of the demand when it is 
either really necessary or is inexpensive. Battery inventory is 
the other source for the demand.  

We use the retail electricity market price in summer 2012 in 
Texas [60], [61]. Figure 7 shows the market price and the 
battery level for the LSE for one day of a deterministic 
problem. At t=18, 4:30 a.m., when the market price is low, it 
starts charging, and it reaches its highest capacity. Then, the 
system starts using the battery from t=64, 2:45 p.m., when the 
market price is at its peak. Finally the battery storage starts 
charging at t=92, 11:00 p.m., when the electricity price is low.   

Four sources transfer load to the battery: the grid, renewable 
generation, pre-purchased, and extra electricity from the DPC. 
The LSE battery is resupplied by the grid when the market 
price is low, mostly at the end of the day and early in the 
morning. It uses wind energy in early morning as well. In 
addition, it sometimes uses pre-purchased electricity to charge 
the battery. On the other side, battery storage transfers 
electricity to the grid, demand, and the DPC.  

We see similar results for the DPC. The difference is that 
there is no pre-purchased electricity for these customers. There 
is also no wind energy, so the only source for renewable 
electricity is rooftop solar panels. 

FIGURE 7. Electricity market price and battery level for the LSE. 

FIGURE 8. Load transferred from pre-purchased electricity. 

The other source of energy for the LSE is pre-purchased 
electricity. Figure 8 shows the pre-purchased electricity that 
transfers to the grid, battery storage, demand, and the DPC. As 
we expect, most of it transfers to demand and the DPC. 
However, small portions of it transfers to the grid when the 
market price is high and to the battery for storage. 

Renewably generated electricity transfers to demand, 
battery storage, the grid, or the DPC. Figure 9 shows that most 
of it satisfies demand. It also displays that the LSE sells back 
to the grid some of the renewable generation, especially in the 
middle of the day when we have more solar generation. Some 
of it transfers to the DPC, and a little of it charges the battery. 

Figure 10 displays the electricity sold back to the grid from 
renewable generation, battery storage, the pre-purchased 
electricity, and the DPC in order to minimize the operational 
cost of the LSE. It demonstrates that the transferred electricity 
to the grid is highest when the market price is high. As Figure 
11 shows, the other side might also happen. We might transfer 
electricity from the grid to DLCC demand, battery storage, or 
the DPC when the market price is low or when the other 
sources do not satisfy demand. The deterministic example 
shows that most electricity transfers from the grid to DLCC 
demand at the end of the day, because load transfers from 
previous hours. In fact, DR adjusted demand is relatively high 
at the end of the day. 
 

 

 
FIGURE 9. Transferred electricity from renewable. 
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FIGURE 10. Electricity transferred to the grid. 

 

FIGURE 11. Electricity transferred from the grid. 

IX. CONCLUSION AND FUTURE WORK 
In this research, we propose a comprehensive optimization 
model for demand response in the future electricity market. 
We formulate a two-agent stochastic linear programming 
model for both the LSE and DPC. The objectives of the 
models are to minimize long-term cost and discomfort penalty. 
Computational experiments of a one-day deterministic 
problem show the behavior of the system. It suggests that 
buying from the grid for the purpose of storage or satisfying 
demand when market price is low or when there is a shortage 
of supply. It also suggests selling back to the grid when market 
price is high in order to make a profit. Note that in this paper, 
we use 15-min time intervals from Settlement Point Price 
(SPP) calculations; however, the model is flexible and 
adjustable for 5-min intervals based on Locational Marginal 
Price (LMP). In the next step, we suggest solving this problem 
as a two-agent infinite horizon stochastic optimization system 
to allow for the LSE and DPC decisons to hedge for 
uncertainty.  
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