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Abstract: In this paper we study the information lost when a real-valued statistic T(X1, … , Xn) is 11 
used to summarize the sample data  𝐱𝐱 = (x1, … , xn) of a random sample 𝐗𝐗 = (X1 , … , Xn) from a 12 
discrete random variable X with a one-dimensional parameter θ. We compare the probability that 13 
the random sample 𝐗𝐗 yields 𝐱𝐱 to the probability that the compressed sample T(𝐗𝐗) yields T(𝐱𝐱). 14 
The former probability measures the total information about 𝐱𝐱 , while the latter measures the 15 
compressed information about 𝐱𝐱, both of which are expressed here as Shannon information. The 16 
difference is the information lost about  𝐗𝐗  by its compression to  T(𝐗𝐗) . We focus on sufficient 17 
statistics for the parameter θ  and develop a general formula independent of θ  for this lost 18 
information as well as for an associated entropy that depends only on T. Our approach would also 19 
work for non-sufficient statistics, but the lost information and associated entropy would involve θ. 20 
Examples are presented for some standard discrete distributions.  21 

Keywords: discrete distributions, Shannon information, lost information, sampling, data reduction, 22 
data compression, entropy, sufficient statistics, likelihood 23 

1. Introduction  24 
We consider the data sample 𝐱𝐱 = (x1, … , xn)  from a random sample  𝐗𝐗 = (X1, … , Xn)  for a 25 

discrete random variable X with sample space S and one-dimensional parameter θ. Here a statistic  26 
T(𝐗𝐗) is a real-valued function of the random sample but not a function of any parameter θ associated 27 
with X, though θ may fixed at an arbitrary value. The data sample 𝐗𝐗 is compressed to the summary 28 
statistic T(𝐗𝐗), which could be used to characterize 𝐗𝐗 or to estimate θ. Such data compression is an 29 
irreversible process [1] and always involves some information loss. For instance, if T(𝐗𝐗) = X�, the 30 
original measurements 𝐱𝐱 cannot be reconstructed from x�, and some information about 𝐱𝐱 is lost. 31 
Nonetheless, such data compression is frequently used to make inferences about, for example, the 32 
true mean  μ  of X.  Our information-theoretic approach to data compression generalizes the 33 
observation in [2] that a binomial random variable loses all the information about the order of 34 
successes in the associated sequence of Bernoulli trials.  35 

For any real-valued statistic  T  and the given sample data 𝐱𝐱,  we decompose the total 36 
information about 𝐗𝐗 available in 𝐱𝐱 into the sum of (a) the information available in the compressed 37 
data T(𝐱𝐱) = 𝐱𝐱� and (b) the information lost in the compression. When T is a sufficient statistic for θ 38 
this lost information is independent of θ . Moreover, by taking the expected value of this lost 39 
information over all possible data sets, we define an associated entropy measure that depends on T 40 
but neither 𝐱𝐱 nor θ. Our approach also works for non-sufficient statistics, but the lost information 41 
and associated entropy would then involve θ, and so θ  must be estimated to computing these 42 
quantities. 43 

The paper is organized as follows. In Section 2, we present the necessary definitions, notation, 44 
and preliminary results. In Section 3, we decompose the total information available about 𝐗𝐗 in 𝐱𝐱  45 
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and give various expressions for the Shannon information lost by compressing 𝐱𝐱  to T(𝐱𝐱).  In 46 
Section 4, we develop an entropy measure associated with this lost information. In Section 5, we 47 
present examples of our results for some standard discrete distributions and several statistics 48 
sufficient for θ. Conclusions are offered in Section 6. 49 

2. Preliminaries  50 
The following definitions, notation, and results are used here. Further details can be found in [3,4] 51 

and elsewhere. An important class of statistics is first defined. 52 
Definition 2.1 (Sufficient Statistic). A statistic T(𝐗𝐗) is a sufficient statistic (SS) for the parameter 53 

θ if the probability 54 

P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] 
(1) 

is independent of θ. 55 
Note that P instead of Pθ is used in (1) since this probability is independent of θ. Also observe 56 

that (1) is not a joint conditional distribution for  𝐗𝐗  since its n condition changes with  𝐱𝐱 . This 57 
observation becomes significant in Section 4. The fact that (1) does not involve θ is used to prove the 58 
Fisher Factorization Theorem (FFT), which is the usual method for determining if a statistic is an SS for 59 
θ. We use the notation f(𝐱𝐱|θ) to denote the joint pmf of 𝐗𝐗 evaluated at the variable 𝐱𝐱 for a fixed value 60 
of θ. 61 

Result 2.2 (Fisher Factorization Theorem). The real-valued statistic T(𝐗𝐗) is sufficient for θ if and 62 
only if there exist functions g: R1 ⟶ R1 and h: Sn ⟶ R1 such that for any sample data 𝐱𝐱 and for all 63 
values of θ the joint pmf f(𝐱𝐱|θ) of 𝐗𝐗 can be factored as  64 

f(𝐱𝐱|θ) = g[T(𝐱𝐱)|θ] × h(𝐱𝐱) 
(2) 

for real-valued, nonnegative functions g on R1 and h on Sn.  The function h does not depend on 65 
θ, while g does depend on 𝐱𝐱 but only through T(𝐱𝐱). 66 

We focus on a sufficient statistic T for θ in Section 3, where we need the notion of a partition [5] 67 
as defined next. 68 

Definition 2.3 (Partition). Let S be the denumerable sample space of the discrete random variable 69 
X , and thus let Sn  be the denumerable sample space of the random sample 𝐗𝐗 . For any statistic 70 
T: Sn ⟶ R1, let τT be the denumerable set τT = {t|∃𝐱𝐱 ∈ Sn for which t = T(𝐱𝐱)}, which is the range of 71 
T. Then T partitions the sample space Sn  into the mutually exclusive and collectively exhaustive 72 
partition sets At = {𝐱𝐱 ∈ Sn|T(𝐱𝐱) = t},∀t ∈ τT. 73 

Figure 2.1 below illustrates the situation.  74 
Figure 2.1 75 

 76 
We also need the well-known likelihood function.  77 
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Definition 2.4 (Likelihood Function). Let 𝐱𝐱 be sample data from a random sample 𝐗𝐗 from a 78 
discrete random variable X  with sample space S  and real-valued parameter θ, and let f(𝐱𝐱|θ) 79 
denote the joint pmf of the random sample 𝐗𝐗. For any sample data 𝐱𝐱, the likelihood function of θ is 80 
defined as 81 

L(θ|𝐱𝐱) = f(𝐱𝐱|θ). (3) 

The likelihood function in (3) is a function of the variable θ for given data 𝐱𝐱. However, the joint 82 
pmf f(𝐱𝐱|θ) as a function of 𝐱𝐱 for fixed θ is frequently called the likelihood function as well. In this 83 
case we also write the joint pmf as L(𝐱𝐱|θ). We distinguish the two cases since L(θ|𝐱𝐱) is not a statistic 84 
but L(𝐱𝐱|θ) is one that incorporates all available information about 𝐗𝐗. Moreover, L(𝐱𝐱|θ) is an SS for θ 85 
[4] and uniquely determines an associated SS called the likelihood kernel to be used in subsequent 86 
examples.  87 

Definition 2.5 (Likelihood kernel). Let S be the sample space of 𝐗𝐗. For fixed θ, suppose that 88 
L(𝐱𝐱|θ) can be factored as  89 

L(𝐱𝐱|θ) = K(𝐱𝐱|θ) × R(𝐱𝐱),  ∀𝐱𝐱 ∈ Sn, (4) 

where K: Sn ⟶ R1 and R: Sn ⟶ R1 have the following properties:  90 
(a) every nonnumerical factor of K(𝐱𝐱|θ) contains θ;  91 
(b) R(𝐱𝐱) does not contain θ;  92 
(c) for ∀𝐱𝐱 ∈ Sn, both K(𝐱𝐱|θ) ≥ 0 and R(𝐱𝐱) ≥ 0; and  93 
(d) K(𝐱𝐱|θ) is not divisible by any positive number except 1.  94 

Then K(𝐱𝐱|θ) is defined as the likelihood kernel of L(𝐱𝐱|θ) and R(𝐱𝐱) the residue of L(𝐱𝐱|θ).  95 
Theorem 2.6. The likelihood kernel K(𝐱𝐱|θ) has the following properties.  96 
(i) K(𝐱𝐱|θ) uniquely exists.  97 
(ii) K(𝐱𝐱|θ) is an SS for θ.  98 
(iii) For any θ1 and θ2, the likelihood ratio L�𝐱𝐱�θ1�

L�𝐱𝐱�θ2�
 equals K�𝐱𝐱�θ1�

 K�𝐱𝐱�θ2�
. 99 

Proof. To prove (i), for fixed θ we first show that the likelihood kernel K(𝐱𝐱|θ) of Definition 2.5 100 
exists by construction. Since the formula for L(θ|𝐱𝐱) = f(𝐱𝐱|θ) must explicitly contain θ, the parameter 101 
θ  cannot appear only in the range of 𝐱𝐱 . Hence L(𝐱𝐱|θ)  as a function of 𝐱𝐱  can be factored into 102 
K(𝐱𝐱|θ) × R(𝐱𝐱) satisfying (a) and (b) of Definition 2.5, where K(𝐱𝐱|θ) ≥ 0,∀𝐱𝐱 ∈ Sn,  and the numerical 103 
factor of K(𝐱𝐱|θ)  is either +1  or −1.  Then R(𝐱𝐱) ≥ 0,  ∀𝐱𝐱 ∈ Sn,  since  K(𝐱𝐱|θ) ≥ 0,  ∀𝐱𝐱 ∈ Sn,  and 104 
K(𝐱𝐱|θ) × R(𝐱𝐱) = f(𝐱𝐱|θ) ≥ 0. Thus (c) is satisfied. Finally, the only positive integer that evenly divides 105 
+1 or −1 is 1, so (d) holds. It follows that the likelihood kernel K(𝐱𝐱|θ) and its associated R(𝐱𝐱) in 106 
Definition 2.5 are well defined and exist.  107 

We next show that K(𝐱𝐱|θ) as constructed above is unique. Let K1(𝐱𝐱|θ) with residue R1(𝐱𝐱) and 108 
K2(𝐱𝐱|θ) with R2(𝐱𝐱) both satisfy Definition 2.5. Thus for j = 1,2,  Rj(𝐱𝐱) does not contain θ while 109 
every nonnumerical factor of Kj(𝐱𝐱|θ) does contain θ. It follows that K1(𝐱𝐱|θ) ≥ 0 and K2(𝐱𝐱|θ) ≥ 0 110 
must be identical or else be a positive multiple of one another. Assume that K2(𝐱𝐱|θ) = λK1(𝐱𝐱|θ) for 111 
some λ > 0. If λ ≠ 1, K2(𝐱𝐱|θ) is divisible by a positive number other than 1 to avoid (d). Thus, 112 
K(𝐱𝐱|θ) is unique. 113 

To prove (ii) we show that this unique K(𝐱𝐱|θ) is an SS for θ. For L(θ|𝐱𝐱) = f(𝐱𝐱|θ), let g[z] = z 114 
and h(𝐱𝐱) = R(𝐱𝐱) in (2). Then L(θ|𝐱𝐱) = f(𝐱𝐱|θ) = g[K(𝐱𝐱|θ)] × h(𝐱𝐱) = K(𝐱𝐱|θ) × R(𝐱𝐱). Thus K(𝐱𝐱|θ) is an 115 
SS by the FFT of Result 2.2.  116 

Finally, (iii) follows immediately from Definition 2.5 and the fact that L(𝐱𝐱|θ2) ≠ 0 for 𝐱𝐱 ∈ Sn. ■ 117 
We next discuss the notion of information to be used here. Actually, probability itself is a measure 118 

of information in the sense that it captures the surprise level of an event. An observer obtains more 119 
information, i.e., surprise, if an unlikely event occurs than if a likely one does. Instead of probability, 120 
however, we use the additive measure known as Shannon information [6, 7] defined as follows. 121 

Definition 2.7 (Shannon Information). Let 𝐱𝐱 be sample data for the random sample 𝐗𝐗 from the 122 
discrete random variable X with a one-dimensional parameter θ, and let f(𝐱𝐱|θ) be the joint pmf of 123 
𝐗𝐗 at 𝐱𝐱. The Shannon information obtained from the sample data 𝐱𝐱 is defined as  124 
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I(𝐱𝐱|θ) = − log  f(𝐱𝐱|θ), (5) 

where the units of I(𝐱𝐱|θ) is bits if the base of the logarithm is 2, which is to be used here. 125 
The expected information over ∀𝐱𝐱 ∈ Sn will also be used. 126 
Definition 2.8 (Entropy). Under the conditions of Definition 2.7, the entropy H(𝐗𝐗|θ) is defined 127 

as the expected value of I(𝐗𝐗|θ); i.e, 128 
H(𝐗𝐗|θ) = � f(𝐱𝐱|θ)I(𝐱𝐱|θ)

𝐱𝐱

. (6) 

Since entropy is the expected information over all possible random samples, it measures the 129 
available information about 𝐗𝐗 better than would a single data set 𝐱𝐱, which might not be typical [8]. 130 
We next give a method to obtain the information loss about 𝐗𝐗  that occurs when a data set 𝐱𝐱  is 131 
compressed to T(𝐱𝐱). In our approach, we focus on a sufficient statistic T so there will be no θ in (5) 132 
for the lost information below. However, our approach is applicable to a non-sufficient statistic as 133 
well if θ is estimated from the data.  134 

3. Information Decomposition under Data Compression by a Real-Valued Statistic 135 
We now develop a procedure to determine how much information about 𝐗𝐗 contained in a data 136 

set 𝐱𝐱 is lost when the data is compressed to T(𝐱𝐱) by the sufficient statistic T. Consider the joint 137 
conditional probability 138 

which is identified with the probabilistic information lost about the event 𝐗𝐗 = 𝐱𝐱  by the data 139 
compression of 𝐱𝐱  to T(𝐱𝐱).  The notation Pθ  refers to the fact that the discrete probability (7) in 140 
general involves the parameter θ. We next express (7) using the definition of conditional probability 141 
to obtain the basis of our development. Result 3.1 is given in [3, p. 273] and proved below to illustrate 142 
the reasoning.     143 

Result 3.1. Let 𝐱𝐱 be sample data for a random sample 𝐗𝐗 from a discrete random variable X 144 
with sample space S and real-valued parameter θ, and let T(𝐗𝐗) be any real-valued statistic. Then 145 

Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)] =
Pθ[𝐗𝐗 = 𝐱𝐱]

Pθ[T(𝐗𝐗) = T(𝐱𝐱)]. (8) 

Proof. Using the definition of conditional probability, rewrite (7) as  146 

Pθ[𝐗𝐗 = 𝐱𝐱; T(𝐗𝐗) = T(𝐱𝐱)]
Pθ[T(𝐗𝐗) = T(𝐱𝐱)] . (9) 

But T(𝐗𝐗) = T(𝐱𝐱) whenever 𝐗𝐗 = 𝐱𝐱, so (8) follows.  ■ 147 
Observe that if T is an SS for θ, the right side of (8) is independent of θ and hence so is the left. 148 

Now taking the negative logarithm of (8) and rearranging terms gives    149 

− log Pθ[𝐗𝐗 = 𝐱𝐱] = − log Pθ[T(𝐗𝐗) = T(𝐱𝐱)] − log Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)]. (10) 

 From (8) note that Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)] ≥ Pθ[𝐗𝐗 = 𝐱𝐱] since Pθ[T(𝐗𝐗) = T(𝐱𝐱)] ≤ 1,  so 150 
− log Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)] ≤ − log Pθ[𝐗𝐗 = 𝐱𝐱].  Similarly, − log Pθ[T(𝐗𝐗) = T(𝐱𝐱)] ≤ − log Pθ[𝐗𝐗 = 𝐱𝐱]. 151 
These facts suggest that the left side of (10) is the total Shannon information in bits about 𝐗𝐗 contained 152 
in the sample data 𝐱𝐱. On the right side of (10), the term − log Pθ[T(𝐗𝐗) = T(𝐱𝐱)] is considered the 153 
information about 𝐗𝐗  contained in the compressed data summary T(𝐱𝐱),  and the term 154 
− log Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)] is identified as the information about 𝐗𝐗 that has been lost as the result 155 
of the data compression by T(𝐱𝐱).  156 

In particular, this lost information represents a combinatorial loss in the sense that multiple 𝐱𝐱’s 157 
may give the same value T(𝐱𝐱) = t as depicted in Figure 2.1 above. In other words, the lost information 158 
− log Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)] is a measure of the knowledge unavailable about the data sample 𝐱𝐱  159 

Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)], (7) 
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when only the compressed data summary T(𝐱𝐱) is known and not 𝐱𝐱 itself. For a sufficient statistic 160 
T(𝐗𝐗) for θ, this lost information is independent of θ. It is a characteristic of T(𝐗𝐗) for the given data 161 
sample 𝐱𝐱. 162 

In terms of Figure 2.1 above, the situation may be described as follows. On the left is the sample 163 
space Sn ⊆ Rn over which probabilities on 𝐗𝐗 are computed. On the right is the range τT ⊆ R1 of T 164 
over which the probability of T(𝐗𝐗)  are computed. T  compresses the data sample 𝐱𝐱  into T(𝐱𝐱), 165 
where multiple 𝐱𝐱’s may give the same T(𝐱𝐱) = t. In Figure 2.1 the distinct data samples 𝐱𝐱1, 𝐱𝐱2, and 166 
𝐱𝐱3 are all compressed into the same value t1. But knowing that T(𝐱𝐱) = t1 for some data sample 𝐱𝐱 167 
does not provide sufficient information to know unequivocally, for example, that 𝐱𝐱 = 𝐱𝐱1. Information 168 
is lost in the compression. One can also say that the total information − log Pθ[𝐗𝐗 = 𝐱𝐱] deriving from the 169 
left side of Figure 2.1 is compressed to − log Pθ[T(𝐗𝐗) = T(𝐱𝐱)] deriving from the right. The reduction 170 
of information from the left to the right side is precisely the lost information 171 
− log Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)]. For fixed t, it is lost due to the ambiguity as to which data sample on 172 
the left actually gave t when only t is known. There is no ambiguity when T is one-to-one.  173 

The general decomposition of information in (10) is next summarized in Definition 3.2, where 174 
T does not need to be sufficient for θ. 175 

Definition 3.2 (𝐈𝐈𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭, 𝐈𝐈𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 , 𝐈𝐈𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥). Let 𝐱𝐱 be sample data for a random sample 𝐗𝐗 from a discrete 176 
random variable X with sample space S and real-valued parameter θ. For any real-valued statistic. 177 
T(𝐗𝐗), the Shannon information about 𝐗𝐗 obtained from the sample data 𝐱𝐱 can be decomposed as  178 

Itotal(𝐱𝐱|θ) = Icomp(𝐱𝐱|θ, T) + Ilost(𝐱𝐱|θ, T), 
(11) 

where 179 
Itotal(𝐱𝐱|θ) = − log Pθ[𝐗𝐗 = 𝐱𝐱], (12) 

Icomp(𝐱𝐱|θ, T) = − log Pθ[T(𝐗𝐗) = T(𝐱𝐱)], 
(13) 

and 180 

Ilost(𝐱𝐱|θ, T) = − log Pθ[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)]. 
(14) 

Both Result 3.1 and Definition 3.2 are valid for any real-valued statistic for 𝐗𝐗. The notation 181 
Itotal(𝐱𝐱|θ) indicates that Itotal is a function of the sample data 𝐱𝐱 for a fixed but arbitrary parameter 182 
value θ.  Similarly, both Icomp(𝐱𝐱|θ, T)  and Ilost(𝐱𝐱|θ, T)  are functions of 𝐱𝐱  for fixed θ  and T. 183 
However, in this paper we focus on sufficient statistics, which provide a simpler expression for 184 
Ilost(𝐱𝐱|θ, T) that does not involve θ. For a sufficient statistic T for θ, we use the notation Ilost(𝐱𝐱|T) 185 
for the lost information, though Itotal(𝐱𝐱|θ)  and Icomp(𝐱𝐱|θ, T)  still require θ.  The next result is an 186 
application of the FFT of Result 2.2.  187 

Theorem 3.3 (Lost Information for an SS). Let 𝐱𝐱 be sample data for a random sample 𝐗𝐗 from 188 
a discrete random variable X with sample space S and real-valued parameter θ. Let T be an SS for 189 
θ, f(𝐱𝐱|θ) be the joint pmf of 𝐗𝐗, and f(𝐱𝐱|θ) = g[T(𝐱𝐱)|θ] × h(𝐱𝐱) as in Result 2.2. Then for all 𝐱𝐱 ∈ Sn 190 

Ilost(𝐱𝐱|T) = − log
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

, (15) 

where AT(𝐱𝐱) is defined in Definition 2.3 for t = T(𝐱𝐱).   191 
Proof. Let 𝐱𝐱 ∈ Sn. Then f(𝐱𝐱|θ) > 0 since 𝐱𝐱 is a realization of 𝐗𝐗. Since T is an SS, we write (7) 192 

without θ. Then it suffices to establish that  193 

P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] =
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

, (16) 

from which (15) immediately follows. Rewrite (8) as            194 
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P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] =
Pθ[𝐗𝐗 = 𝐱𝐱]

Pθ[T(𝐗𝐗) = T(𝐱𝐱)]
=

f(𝐱𝐱|θ)
∑ f(𝐲𝐲|θ)𝐲𝐲ϵAT(𝐱𝐱)

, (17) 

so from (17) and (2), then  195 

P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] =
g[T(𝐱𝐱)|θ] × h(𝐱𝐱)

∑ g[T(𝐲𝐲)|θ] × h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

. (18) 

But T(𝐲𝐲) = T(𝐱𝐱),∀𝐲𝐲 ∈ AT(𝐱𝐱) in (18), so  196 

P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] =
g[T(𝐱𝐱)|θ] × h(𝐱𝐱)

g[T(𝐱𝐱)|θ] × ∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

,∀𝐱𝐱 ∈ Sn. (19) 

Since f(𝐱𝐱|θ) > 0 and hence g[T(𝐱𝐱)|θ] ≠ 0, this term can be canceled on the right side of (19) to yield 197 
(16). Taking −log of (16) completes the proof. ■ 198 

Now consider Theorem 3.3 when each At is a singleton in (16), i.e., when T is a one-to-one 199 
function. In this extreme case, P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] = 1  since ∑ h(𝐲𝐲)𝐲𝐲∈AT(𝐱𝐱) = h(𝐱𝐱)  in the 200 
denominator of the right side of (16).  Thus Ilost(𝐱𝐱|T) = 0 from which Icomp(𝐱𝐱|θ, T) = Itotal(𝐱𝐱|θ) for 201 
all 𝐱𝐱 in Sn. Thus the special case of a one-to-one T justifies the identification of the lost information 202 
as Ilost(𝐱𝐱|θ, T) = − log Pθ[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)]. In other words, for all data samples 𝐱𝐱, 𝐲𝐲 ∈ Sn, if 𝐱𝐱 ≠ 𝐲𝐲 203 
whenever T(𝐱𝐱) ≠ T(𝐲𝐲),  then P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)]  is not diminished by the compression of the 204 
singleton AT(𝐱𝐱) to the number T(𝐱𝐱).  205 

More generally, it is also true that Ilost(𝐱𝐱|θ, T) = 0 when T is one-to-one but not sufficient for 206 
θ. In this case, write Pθ[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] = Pθ[𝐗𝐗=𝐱𝐱]

Pθ[T(𝐗𝐗)=T(𝐱𝐱)]
= f(𝐱𝐱|θ)

∑ f(𝐲𝐲|θ)𝐲𝐲ϵAT(𝐱𝐱)
. But since T is one-to-one, 207 

∑ f(𝐲𝐲|θ)𝐲𝐲ϵAT(𝐱𝐱) = f(𝐱𝐱|θ), Pθ[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] = 1, and again Ilost(𝐱𝐱|θ, T) = 0.  208 
Now consider the other extreme case where T(𝐱𝐱) = c  is constant on Sn. Then 209 

Pθ[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = c] = Pθ[𝐗𝐗=𝐱𝐱]
Pθ[T(𝐗𝐗)=c]

. But Pθ[T(𝐗𝐗) = c] = 1, so Pθ[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = c] = Pθ[𝐗𝐗 = 𝐱𝐱] and 210 
Ilost(𝐱𝐱|θ, T) = Itotal(𝐱𝐱|θ, T) on Sn. In this case, Icomp(𝐱𝐱|θ, T) = 0 because the event T(𝐱𝐱) = c gives no 211 
information about 𝐱𝐱. 212 

Next, in the following corollary we show that (16) can be simplified when T is the likelihood 213 
function. 214 

Corollary 3.4 (Information Loss for Likelihood Function). Under the assumptions of Theorem 215 
3.3, if T(𝐱𝐱) = L(𝐱𝐱|θ), then 216 

Ilost(𝐱𝐱|L) = − log
1

�AL�𝐱𝐱�θ��
, (20) 

where �AL�𝐱𝐱�θ�� is the cardinality of the partition set At for t = L(𝐱𝐱|θ). 217 
Proof. For T(𝐱𝐱) = L(𝐱𝐱|θ) = f(𝐱𝐱|θ)  in (2), let g  be the identity function and h(𝐱𝐱) = 1.  Then 218 

substituting h(𝐱𝐱) = 1 into (16) gives the denominator ∑ 1𝐲𝐲ϵA
L�𝐱𝐱�θ� = �AL�𝐱𝐱�θ�� to yield (20). ■ 219 

We next state a reproductive property of a statistic T′ that is a one-to-one function of a sufficient 220 
statistic T for θ. 221 
 Theorem 3.5. If there is a one-to-one function between a sufficient statistic T for θ and an 222 
arbitrary real-valued statistic T′ on Sn, the following hold. 223 

(i)   T′ is also an SS. 224 
(ii)  T and T′ partition the sample space S into the same partition sets. 225 
(iii) Ilost(𝐱𝐱|T) = Ilost(𝐱𝐱|T′),∀𝐱𝐱 ∈ Sn. 226 
Proof. To prove (i), let u be a real-valued one-to-one function of T′ such that  227 

T(𝐱𝐱) = u[T′(𝐱𝐱)]. (21) 

Since T is an SS, by equation (2) there are real-valued functions g on R1 and h on Sn for which 228 
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f(𝐱𝐱|θ) = g[T(𝐱𝐱)|θ] × h(𝐱𝐱). (22) 

By substituting T(𝐱𝐱) from (21) in (22), we get 229 

f(𝐱𝐱|θ) = g(u[T′(𝐱𝐱)]|θ) × h(𝐱𝐱), (23) 

which can be rewritten as  230 

f(𝐱𝐱|θ) = (g ∘ u)[T′(𝐱𝐱)|θ] × h(𝐱𝐱). (24) 

Since T′ in (24) satisfies the condition of Result 2.2 for g′ = g ∘ u, T′ is an SS.  231 
 To prove (ii), we use Definition 2.3. Let T  partition the sample space Sn  into the mutually 232 
exclusive and collectively exhaustive sets At = {𝐱𝐱|T(𝐱𝐱) = t},∀t ∈ τT. By equation (21) we can also write 233 
At as 234 

At = {𝐱𝐱|u[T′(𝐱𝐱)] = t},∀t ∈ τT. (25) 

Since u is a one-to-one function, it has an inverse u−1. Letting u−1(t) = t′, we apply u−1 to the right 235 
side of (25) and get 236 

At = {𝐱𝐱|T′(𝐱𝐱) = t′},∀t′ ∈ u(τT). (26) 

But u(τT) =  τT′  and the cardinalities |τT| = |τT′|, so the right side of (26) is At′ and  237 

At = At′ .  (27) 

Finally, to get (iii) we use Theorem 3.3 to calculate information lost over two statistics T and T′. 238 
Since h(𝐱𝐱) is the same in (22) and (24) and since equation (27) holds, we sum h(𝐱𝐱) over the same sets 239 
in the denominator of equation (16) for both T and T′ to give  240 

Ilost(𝐱𝐱|T) = Ilost(𝐱𝐱|T′) (28) 

and complete the proof. ■ 241 
We next compare the information loss of the sufficient statistic L(𝐱𝐱|θ) to other sufficient statistics. 242 

For the sufficient statistic K(𝐱𝐱|θ), a lemma is needed.  243 
Lemma 3.6. Let 𝐱𝐱 be any data sample for a random sample 𝐗𝐗 from the discrete random variable 244 

X with real-valued parameter θ. Then K(𝐱𝐱|θ) is a function of L(𝐱𝐱|θ) and τL ≥ τK.   245 
Proof. From [3, p. 280], K(𝐱𝐱|θ) is a function of L(𝐱𝐱|θ) if and only if K(𝐱𝐱|θ) = K(𝐲𝐲|θ) whenever 246 

L(𝐱𝐱|θ) = L(𝐲𝐲|θ) . For all data samples 𝐱𝐱 and 𝐲𝐲, we thus prove that if L(𝐱𝐱|θ) = L(𝐲𝐲|θ), then K(𝐱𝐱|θ) =247 
K(𝐲𝐲|θ). Thus suppose that L(𝐱𝐱|θ) = L(𝐲𝐲|θ). By Definition 2.5 we can decompose L(𝐱𝐱|θ) and L(𝐲𝐲|θ) 248 
into K(𝐱𝐱|θ)R(𝐱𝐱)  and K(𝐲𝐲|θ)R(𝐲𝐲),  respectively. Note that K(𝐲𝐲|θ) ≠ 0.  Otherwise L(𝐲𝐲|θ) = 0 in 249 
contradiction to 𝐲𝐲 being sample data with a nonzero probability of occurring. Write  250 

K(𝐱𝐱|θ)
K(𝐲𝐲|θ) =

R(𝐲𝐲)
R(𝐱𝐱)

. (29) 

Suppose that K(𝐱𝐱|θ) ≠ K(𝐲𝐲|θ)  so that K(𝐱𝐱|θ)
K(𝐲𝐲|θ)

= R(𝐲𝐲)
R(𝐱𝐱)

≠ 1  in (29). From Definition 2.5, every 251 
nonnumerical factor of K(𝐱𝐱|θ) and K(𝐲𝐲|θ) contains θ, and neither K(𝐱𝐱|θ) nor K(𝐲𝐲|θ) is divisible by 252 
any positive number except the number 1. Hence, since R(𝐲𝐲)

R(𝐱𝐱)
 does not contain θ, the nonnumerical 253 

factors of K(𝐱𝐱|θ) and K(𝐲𝐲|θ) must cancel in (29) and the remaining numerical factors could not be 254 
identical. Thus at least one of these factors would be divisible by a positive number other than 1 in 255 
contradiction to Definition 2.5. It now follows that K(𝐱𝐱|θ) = K(𝐲𝐲|θ),  so K(𝐱𝐱|θ) is some function u of 256 
L(𝐱𝐱|θ). Finally, τL ≥ τK  since this function u is surjective from Sn onto its image u(Sn). ■ 257 
  Lemma 3.7. Under the conditions of Lemma 3.6, the sufficient statistics L and K satisfy  258 

Icomp(𝐱𝐱|θ, L) ≥ Icomp(𝐱𝐱|θ, K),∀𝐱𝐱 ∈ Sn. (30) 
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Proof. Let  𝐱𝐱 ∈ Sn  and suppose that 𝐲𝐲 ∈  AL(𝐱𝐱).  Then L(𝐲𝐲|θ) = L(𝐱𝐱|θ),  so it follows from 259 
Lemma 3.6 that K(𝐲𝐲|θ) = K(𝐱𝐱|θ) and thus 𝐲𝐲 ∈  AK(𝐱𝐱). Hence AL(𝐱𝐱) ⊆ AK(𝐱𝐱), and so  260 

           Pθ[L(𝐗𝐗|θ) = L(𝐱𝐱|θ)] = � f(𝐱𝐱|θ)
𝐲𝐲ϵAL(𝐱𝐱)

≤ � f(𝐱𝐱|θ)
𝐲𝐲ϵAK(𝐱𝐱)

= Pθ[K(𝐗𝐗|θ) = K(𝐱𝐱|θ)],∀𝐱𝐱

∈ Sn 

(31) 

Taking the Shannon information of both sides of the inequality in (31) and using (13) gives (30). ■  261 
Theorem 3.8. Let 𝐱𝐱 be sample data for a random sample 𝐗𝐗 from a discrete random variable X 262 

with the real-valued parameter θ. Then for all 𝐱𝐱 ∈ Sn, 263 
Ilost(𝐱𝐱|L) ≤ Ilost(𝐱𝐱|K). (32) 

Proof. Let 𝐱𝐱 ∈ Sn. Note that Itotal(𝐱𝐱|θ) in (12) does not depend on the arbitrary sufficient statistic 264 
 T of (11). Hence  265 

Itotal(𝐱𝐱|θ) = Icomp(𝐱𝐱|θ, L) + Ilost(𝐱𝐱|L) = Icomp(𝐱𝐱|θ, K) + Ilost(𝐱𝐱|K). (33) 

Then (32) follows immediately from (30) and (33). ■  266 
As a consequence of Theorem 3.5, Theorem 3.8 has an immediate corollary. 267 
Corollary 3.9. Under the conditions of Theorem 3.8, let T be a sufficient statistic for θ for 268 
which there is a one-to-one function between T and K. Then for all 𝐱𝐱 ∈ Sn,  269 

Ilost(𝐱𝐱|L) ≤ Ilost(𝐱𝐱|T). (34) 

Corollary 3.9 raises the question whether (34) holds for all sufficient statistics 𝐓𝐓 for 𝛉𝛉 or even 270 
for all real-valued statistics 𝐓𝐓. It is conjectured that the first conclusion is false and hence so is the 271 
second, but the question remains open. It is conceivable that notion of a minimal sufficient statistic [3] 272 
is relevant. Regardless, the proofs of Lemma 3.7 and Theorem 3.8 illustrate the fact that the relation 273 
between the lost information for two statistics 𝐓𝐓 and 𝐓𝐓′ is determined by the relation between their 274 
partition sets 𝐀𝐀𝐭𝐭 = {𝐱𝐱|𝐓𝐓(𝐱𝐱) = 𝐭𝐭} and 𝐁𝐁𝐭𝐭′ = {𝐱𝐱|𝐓𝐓′(𝐱𝐱) = 𝐭𝐭′}. For example, if for every 𝐀𝐀𝐭𝐭 there exists a 275 
𝐁𝐁𝐭𝐭′  for which 𝐀𝐀𝐭𝐭 ⊂ 𝐁𝐁𝐭𝐭′ , then the partition of 𝐒𝐒𝐧𝐧  by the 𝐁𝐁𝐭𝐭′  of 𝐓𝐓′  is said to be coarser than the 276 
partition by the 𝐀𝐀𝐭𝐭 of 𝐓𝐓. In that case, 𝐈𝐈𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥(𝐱𝐱|𝛉𝛉,𝐓𝐓) ≤ 𝐈𝐈𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥(𝐱𝐱|𝛉𝛉,𝐓𝐓′) because each 𝐱𝐱 ∈ 𝐒𝐒𝐧𝐧 has more 𝐲𝐲 ∈277 
𝐒𝐒𝐧𝐧  with 𝐓𝐓′(𝐲𝐲) = 𝐓𝐓′(𝐱𝐱)  than there are with 𝐓𝐓(𝐲𝐲) = 𝐓𝐓(𝐱𝐱).  In words, 𝐓𝐓′(𝐲𝐲) = 𝐭𝐭′  is at least as 278 
ambiguous as 𝐓𝐓(𝐲𝐲) = 𝐭𝐭 in determining the data sample giving the value of the respective statistics.   279 

 280 
4. Entropic Loss for an SS 281 

For a sufficient statistic T for θ we now propose an entropy measure to characterize T by the 282 
expected lost information incurred by compressing the random sample 𝐗𝐗  into T(𝐗𝐗).  This 283 
expectation is taken over all possible data sets 𝐱𝐱.  This nonstandard entropy measure is called 284 
entropic loss, and it depends on neither a particular data set 𝐱𝐱 nor the value of θ. Before defining 285 
this measure, we need to determine the appropriate pmf to use in taking an expectation. The 286 
following results are used.  287 

Result 4.1. Under the assumptions of Theorem 3.3, for any data sample let t = T(𝐱𝐱)  and 288 
consider the partition set At. Then 289 

� P[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = t] = 1.
𝐱𝐱∈At

  (35) 

Proof. Summing (16) over 𝐱𝐱 ∈ At yields    290 

� P[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = t] =
∑ h(𝐱𝐱)𝐱𝐱ϵAT(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

= 1.
𝐱𝐱∈At

  (36) 

to give (35). ■ 291 
Result 4.2. Under the assumptions of Theorem 3.3, the sum   292 

� P[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)]
𝐱𝐱∈Sn

= |τT|.  (37) 
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Proof. We perform the sum on the left of (37) by first summing over 𝐱𝐱 ∈ At for fixed t and then 293 
summing over each t ∈ τT to give 294 

� P[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)]
𝐱𝐱∈Sn

= � � P[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = t]
𝐱𝐱∈Att∈τT

,  (38) 

The inner series on the right side of (38) sums to one by Result 4.1. Hence the outer sum yields 295 
|τT| for τT = {t|∃𝐱𝐱 ∈ Sn for which t = T(𝐱𝐱)} ■ 296 

From (37) it follows that the left side of (37) is not a probability distribution on Sn unless |τT| =297 
1.  Moreover, P[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)]  is not a conditional probability distribution even if |τT| = 1 298 
since the condition T(𝐗𝐗) = T(𝐱𝐱)  varies with 𝐱𝐱.  However, we use Result 4.2 to normalize 299 
P[𝐗𝐗 = 𝐱𝐱 | T(𝐗𝐗) = T(𝐱𝐱)] and obtain the appropriate pmf for calculating the expectation of Ilost(𝐗𝐗|T).  300 

Definition 4.3 (Entropic Loss). Under the assumptions of Theorem 3.3, the entropic loss 301 
resulting from the data compression by T is defined as 302 

Hlost(𝐗𝐗, T) =
−1
|τT| � P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)] log P[𝐗𝐗 = 𝐱𝐱|T(𝐗𝐗) = T(𝐱𝐱)]

𝐱𝐱∈Sn
,  (39) 

which from (15) and (16) can be rewritten as  303 

Hlost(𝐗𝐗, T) =
−1
|τT| �

h(𝐱𝐱)
∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

log
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)𝐱𝐱∈Sn
.  (40) 

Note that (39) and (40) are independent of both 𝐱𝐱  and θ.  Also, as noted in Section 3 for 304 
Ilost(𝐱𝐱|T), if each AT(𝐱𝐱) is a singleton in (40), then Hlost(𝐗𝐗, T) = 0. We now compute Hlost(T) for the 305 
sufficient statistic T(𝐗𝐗) = L(𝐗𝐗|θ).  306 

Theorem 4.4 (Entropic Loss for Likelihood Function). Under the assumptions of Theorem 3.3, 307 
the entropic loss resulting from data compression by T(𝐱𝐱) = L(𝐱𝐱|θ) is  308 

Hlost(𝐗𝐗, L) =
−1
|τL| � log

1
|At|t∈τL

.  (41) 

Proof. From (20) write  309 

Hlost(𝐗𝐗, L) =
−1
|τL| �

1
|AL(𝐱𝐱)|

log
1

|AL(𝐱𝐱)|
𝐱𝐱∈Sn

.  (42) 

We decompose the sum over 𝐱𝐱 ∈ Sn in (42) to consecutive sums over 𝐱𝐱 ∈ At and then t ∈ τT to get   310 

Hlost(𝐗𝐗, L) =
−1
|τL| � �

1
|At|

log
1

|At|𝐱𝐱∈Att∈τL

=
−1
|τL| �

|At|
|At|

log
1

|At|t∈τL

.  (43) 

Equation (41) now follows from (43). ■ 311 
Since Hlost(𝐗𝐗, T) has been defined only for a sufficient statistic T for θ and is independent of 312 

θ, as well as the data sample 𝐱𝐱. Hlost(𝐗𝐗, T) could thus be used to compare sufficient statistics. In 313 
particular, if the sufficient statistics T1(𝐗𝐗)  and T2(𝐗𝐗)  are considered as estimators for θ , then 314 
entropic loss could serve as a metric for regarding, say, T1  as a better estimator for θ than T2 if 315 
Hlost(𝐗𝐗, T1) < Hlost(𝐗𝐗, T2).  316 

Result 4.5. If there is a one-to-one function between two sufficient statistics T and T′ for θ, then 317 
they have the same entropic loss for a random sample 𝐗𝐗; i.e., 318 

Hlost(𝐗𝐗, T) = Hlost(𝐗𝐗, T′). (44) 

Proof. For all 𝐱𝐱 ∈ Sn, Ilost(𝐱𝐱|T) = Ilost(𝐱𝐱|T′) from Theorem 3.5, so  319 

− log
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

= − log
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT′(𝐱𝐱)

  (45) 

from which 320 
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h(𝐱𝐱)
∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

=
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT′(𝐱𝐱)

  (46) 

Thus from (45) and (46) 321 

h(𝐱𝐱)
∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

log
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

=
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT′(𝐱𝐱)

log
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT′(𝐱𝐱)

.  (47) 

Now summing (47) over 𝐱𝐱 ∈ Sn yields 322 

�
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)

log
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT(𝐱𝐱)𝐱𝐱∈Sn
= �

h(𝐱𝐱)
∑ h(𝐲𝐲)𝐲𝐲ϵT′(𝐱𝐱)

log
h(𝐱𝐱)

∑ h(𝐲𝐲)𝐲𝐲ϵAT′(𝐱𝐱)𝐱𝐱∈Sn
 .  (48) 

But from Theorem 3.5, |τT| = |τT′|. Thus dividing the left side of (48) by −|τT| and the right side by 323 
−|τT′| yields (44). ■ 324 

Given (32), it might be anticipated that 325 

Hlost(𝐗𝐗, L) ≤ Hlost(𝐗𝐗, K). (49) 
 

However, we conjecture that (49) is not always true, but we have no counterexample. If this conjecture 326 
is true, then L(𝐱𝐱|θ) would not in general have the minimum entropic loss among sufficient statistics 327 
for θ. 328 

5. Examples and Computational Issues 329 
In this section we present examples involving the discrete Poisson, binomial, and geometric 330 

distributions [9]. For each distribution, three sufficient statistics for some parameter θ are analyzed. 331 
Thus the right side of (8) is independent of θ, as well as the information Ilost(𝐱𝐱|T) conveyed by the 332 
data sample 𝐱𝐱 about 𝐗𝐗. Even for sufficient statistics, calculating the information quantities of this 333 
paper may present computational issues, some of which are discussed in this section. Our examples 334 
are therefore simple in order to focus on the definitions and results of Sections 3 and 4. 335 

Example 5.1 (Poisson Distribution). Consider the random sample 𝐗𝐗 = (X1, … , Xn) with the data 336 
sample 𝐱𝐱 = (x1, … , xn) from a Poisson random variable X. We consider three sufficient statistics for 337 
the parameter θ > 0.  These sufficient statistics are T1(𝐗𝐗) = ∑ Xi,n

i=1  the likelihood kernel T2(𝐗𝐗) =338 
K(𝐗𝐗|θ) for fixed but arbitrary  θ  and the likelihood function T3(𝐗𝐗) =339 
L(𝐗𝐗|θ) for fixed but arbitrary θ . In particular, we use T1(𝐗𝐗) as a surrogate for T1′(𝐗𝐗) =  ∑ Xi

n
i=1
n

. 340 
Neither T1(𝐗𝐗) or T1′(𝐗𝐗) involves θ and can thus be used either to characterize 𝐗𝐗 or to estimate θ. 341 
Moreover, since there is an obvious one-to-one function relating  ∑ Xi

n
i=1
n

  and ∑ Xin
i=1 , Theorems 3.5 342 

and 4.5 establish that Ilost(𝐱𝐱|T1′) = Ilost(𝐱𝐱|T1)  and Hlost(𝐗𝐗, T1′) =  Hlost(𝐗𝐗, T1), respectively. We 343 
consider T1(𝐗𝐗) because it is also Poisson, whereas T1′(𝐗𝐗)  is not since  ∑ Xi

n
i=1
n

 is not necessarily a 344 
nonnegative integer. In contrast to T1(𝐗𝐗), both T2(𝐗𝐗) and T3(𝐗𝐗) contain θ and can only be used to 345 
characterize 𝐗𝐗. For each of these three sufficient statistics we develop an expression for Ilost(𝐱𝐱|T) 346 
and describe how to obtain a numerical value. We then illustrate previous results with simple data and 347 
present computational results in Table 5.1.  348 

Case 1: Let T1(𝐗𝐗) = ∑ Xi .n
i=1  Observe  that T1(𝐗𝐗) is a sufficient statistic for θ from Result 2.2 349 

since f(𝐱𝐱|θ) = Pθ[𝐗𝐗 = 𝐱𝐱] = θ∑ xi
n
i=1  e−nθ

∏ xi!n
i=1

 can be factored in (2) into the functions g[T1(𝐱𝐱)|θ] = θ∑ xi
n
i=1  e−nθ 350 

and h(𝐱𝐱) = 1
∏ xi!n
i=1

. Next recall that the statistic ∑ Xin
i=1  has a Poisson distribution with parameter 351 

nθ [9]. Thus Pθ[∑ Xin
i=1 = ∑ xin

i=1 ] = (nθ)∑ xi
n
i=1  e−nθ

�∑ xin
i=1 �!

, and so (8) becomes  352 

P[𝐗𝐗 = 𝐱𝐱|∑ Xin
i=1 = ∑ xin

i=1 ] =
1

n∑ xin
i=1

�
∑ xin
i=1

x1, … , xn
�, (50) 
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where the multinomial coefficient �∑ xi
n
i=1

x1,…,xn
� = (∑ xi)

n
i=1 !

∏ xi!n
i=1

. It follows from (50) and (10) that            353 

Ilost(𝐱𝐱|T1) = − log�
∑ xin
i=1

x1, … , xn
� + (log n)� xi

n

i=1

, (51) 

which is also Ilost(𝐱𝐱|T1′). 354 
For a data sample (x1, … , xn),  the evaluation of Ilost(𝐱𝐱|T1)  in (51) involves computing 355 

factorials. For realistic data, the principal limitation in calculating them by direct multiplication is 356 
their magnitude. See [11] for a discussion. However, (51) can be approximated using either the well-357 
known Stirling formula or the more accurate Ramanujan approximation [12]. The online multinomial 358 
coefficient calculator [13] can evaluate multinomial coefficients for both xi and n  less than 359 
approximately 50 if any xi = 0 is removed from �∑ xi

n
i=1

x1,…,xn
�. Such deletions do not affect the calculation 360 

since 0! = 1.  361 
As a numerical example, consider a data sample 𝐱𝐱  of size n = 34 from a Poisson random 362 

variable X  with θ = 3. On the average, T1(𝐗𝐗) = ∑ Xi =n
i=1 nθ = 102, so we take ∑ xi =n

i=1 102  for 363 
the data sample 𝐱𝐱 = (4, 7, 1, 3, 4, 2, 5, 0, 1, 2, 3, 6, 8, 0, 1, 2, 4, 9, 0, 2, 3, 1, 4, 2, 0, 1, 5, 6, 2, 7, 0, 1, 4, 2). Then 364 
the calculator at [13] gives that �∑ xi

n
i=1

x1,…,xn
� ≈ 1.574 × 10123 in (50). Moreover, (log n)∑ xin

i=1 = 518.915. 365 
Hence from (51), Ilost(𝐱𝐱|T1) = Ilost 1T( )′x| ≈  109.667  bits of Shannon information. This value 366 
corresponds to 13.708 bytes at 8 bits per byte or to 0.013 kilobytes (KB) at 1024 bytes per kilobyte [14]. It 367 
thus follows from the discussion at the beginning of this example that   368 

Ilost(𝐱𝐱|T1) = Ilost 1T( )′x| ≈  0.013 KB. (52) 

Case 2: Let T2(𝐗𝐗) = K(𝐗𝐗|θ) for fixed but arbitrary θ > 0.  For a data sample (x1, … , xn) write  369 

L(𝐱𝐱|θ) = f(𝐱𝐱|θ) =
θ∑ xi

n
i=1  e−nθ

∏ xi!n
i=1

, 
(53) 

from which 370 

K(𝐱𝐱|θ) = θ∑ xi
n
i=1  e−nθ (54) 

and R(𝐱𝐱) = 1
∏ xi!n
i=1

 in (4). Note that for all fixed θ > 0 except θ = 1, there is an obvious one-to-one 371 
function between T1(𝐱𝐱) = ∑ xin

i=1  and (54). Hence in the numerical example of Case 1, 372 
Ilost�𝐱𝐱�K(𝐱𝐱|θ)� = Ilost(𝐱𝐱|T1) ≈  0.013 KB from Theorem 3.5 for all θ > 0 except θ = 1. For θ = 1,  373 
K(𝐱𝐱|θ) =  e−n  and is constant with respect to any data sample 𝐱𝐱.  Thus Icomp(𝐱𝐱|1, K) = 0  and 374 
Ilost�𝐱𝐱�K(𝐱𝐱|1)� = Itotal(𝐱𝐱|1, K). It follows that K(𝐱𝐱|1) provides no information about 𝐗𝐗. 375 

Case 3: Let T3(𝐗𝐗) = L(𝐗𝐗|θ) for fixed but arbitrary θ > 0. We attempt to obtain Ilost�𝐱𝐱�L(𝐱𝐱|θ)� 376 
for a data sample 𝐱𝐱 = (x1, … , xn) by determining �AL�𝐱𝐱�θ�� and using (20). From (53), note that for all 377 
fixed θ > 0 except θ = 1, 𝐲𝐲 ∈ AL�𝐱𝐱�θ�  if and only if 378 

θ∑ yi
n
i=1  

∏ yi!n
i=1

=  θ∑ xi
n
i=1  

∏ xi!n
i=1

.  
    (55) 

Thus for any fixed θ  satisfying  θ > 0 and θ ≠ 1,  𝐲𝐲 ∈ AL�𝐱𝐱�θ�  if both ∑ yin
i=1 = ∑ xin

i=1  and 379 
∏ yi!n
i=1 = ∏ xi!n

i=1 . However, for some  θ > 0 and θ ≠ 1, it is possible that 𝐲𝐲 ∈ AL�𝐱𝐱�θ� when neither 380 
∑ yin
i=1 = ∑ xin

i=1  nor ∏ yi!n
i=1 = ∏ xi!n

i=1 .  For example, let θ = 2, 𝐱𝐱 = (4,1,1,0),  and 𝐲𝐲 = (3,2,0,0). 381 
Then ∑ xin

i=1 = 6, ∑ yin
i=1 =5, ∏ xi!n

i=1 = 24, and ∏ yi!n
i=1 = 12. However, (55) is satisfied.  382 

Such complications suggest that an efficient implicit enumeration of the 𝐲𝐲 satisfying (55) would 383 
be required to obtain �AL�𝐱𝐱�θ�� for calculating Ilost�𝐱𝐱�L(𝐱𝐱|θ)� from (20). Using such an algorithm, a 384 
conventional computer could probably compute Ilost�𝐱𝐱�L(𝐱𝐱|θ)� for the numerical data and value of 385 
θ in Case 1 since there is now a 250 petabyte, 200 petaflop conventional computer [15]. Substantially 386 
larger problems, if not already tractable, will likely be so in the foreseeable future on quantum 387 
computers. Recently the milestone of quantum supremacy was achieved where the various possible 388 
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combinations of a certain randomly generated output were obtained in 110 seconds, whereas this task 389 
would have taken the above conventional supercomputer 10,000 years [16]. Regardless, for the data 390 
of Case 1, we have the upper bound Ilost�𝐱𝐱�L(𝐱𝐱|θ)� ≤  0.013 KB from (32).   391 

We present some simple further simple computational results for the Poisson example distribution 392 
to illustrate relationships between among T1, T2, T3. Table 5.1 below summarizes the results for sample 393 
data (x1, x2, x3)  with ∑ xi3

i=1 ≤ 2.  In particular, a complete enumeration of AL�𝐱𝐱�θ�  gives 394 
Ilost�𝐱𝐱�L(𝐱𝐱|θ)� from (20). 395 

 396 
Table 5.1. Poisson Example 397 

 398 
𝐱𝐱 = (x1, x2, x3) T1(𝐱𝐱) Ilost(𝐱𝐱|T1) T2(𝐱𝐱) Ilost(𝐱𝐱|T2) T3(𝐱𝐱) Ilost(𝐱𝐱|T3) 

(0,0,0)  0 0 e−3θ 0 e−3θ 0 
(0,0,1)  

1 
 

 
log 3 

 
θe−3θ 

 
log 3 

 
θe−3θ 

 
log 3 (0,1,0) 

(1,0,0) 
(1,1,0)  

  2 
 

log
9
2

 

 

θ2e−3θ 

 

log
9
2

 

 

θ2e−3θ 

 

log 3 (1,0,1) 
(0,1,1) 
(2,0,0)  

2 
 

log 9 
 

θ2e−3θ 
 

log 9 
 
θ2e−3θ

2
 

 
log 3 (0,2,0) 

(0,0,2) 
 399 
Example 5.2 (Binomial Distribution). Consider a random sample 𝐗𝐗 = (X1 , … , Xn)  from a 400 

binomial random variable X with parameters m and θ, where θ is the probability of success on 401 
any of the m  Bernoulli trials associated with the Xi , i = 1, … , n.  Let m  be fixed, so the only 402 
parameter is θ. Moreover, the sample space of the underlying random variable X is now finite. 403 

  Case 1: T1(𝐗𝐗) = ∑ Xin
i=1 . Again ∑ Xi

n
i=1  is an SS for θ.  From [9], ∑ Xin

i=1  has a binomial 404 
distribution with parameter θ for fixed nm. Hence 405 

Pθ ��Xi

n

i=1

= � xi

n

i=1

� = θ∑ xi
n
i=1  θmn−∑ xi

n
i=1 �

mn
∑ xin
i=1

� (56) 

and                       406 

Pθ[𝐗𝐗 = 𝐱𝐱] = θ∑ xi
n
i=1  θmn−∑ xi

n
i=1 ��

m
xi
�

n

i=1

. (57) 

From (1), dividing (57) by (56) gives 407 

P[𝐗𝐗 = 𝐱𝐱|∑ Xin
i=1 = t] =

∏ �mxi�
n
i=1

�mnt �
. 

(58) 

By taking the −log of (58) gives the lost information as 408 

Ilost(𝐱𝐱|T1) = − log
∏ �mxi�
n
i=1

�mnt �
= −� log �

m
xi
�

n

i=1

+ log �
mn

t
�. 

(59) 

Case 2: T2(𝐗𝐗) = K(𝐗𝐗|θ). In this case we use (16) as in Example 5.1. Write 409 

L(𝐱𝐱|θ) = f(𝐱𝐱|θ) = θ∑ xi
n
i=1  (1 − θ)mn−∑ xi

n
i=1 ��

m
xi
�

n

i=1

, (60) 

from which K(𝐱𝐱|θ) = θ∑ xi
n
i=1  (1 − θ)mn−∑ xi

n
i=1  and R(𝐱𝐱) = ∏ �mxi�

n
i=1  in (4). To factor the right side of 410 

(60) as in (2), let g be the identity function and h(𝐱𝐱) = ∏ �mxi�
n
i=1 . Hence,  411 
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Ilost(𝐱𝐱|T2) = − log
∏ �mxi�
n
i=1

∑ ∏ �myi�
n
i=1𝐲𝐲∈AK�𝐱𝐱�θ�

, (61) 

and (61) yields  412 

Ilost(𝐱𝐱|T2) = −� log �
m
xi
�

n

i=1

+ log � ��
m
yi
�

n

i=1𝐲𝐲∈AK�𝐱𝐱�θ�

, (62) 

where 413 

AK(𝐱𝐱|θ) = �𝐲𝐲 ∈ Sn�θ∑ yi
n
i=1  (1 − θ)mn−∑ yi

n
i=1 = θ∑ xi

n
i=1  (1 − θ)mn−∑ xi

n
i=1 �. (63) 

From (63), for any fixed θ  satisfying 0 < θ < 1 and θ ≠ 1/2,  it can easily be shown that 𝐲𝐲 ∈414 
AK�𝐱𝐱�θ� if and only if ∑ yin

i=1 = ∑ xin
i=1 .  Thus in general, for a given 𝐱𝐱  and fixed θ,  determining 415 

AK�𝐱𝐱�θ� in Case 2 would require an enumeration of the 𝐲𝐲 satisfying (63) to compute (62). We perform 416 
such an enumeration below for a simple example. 417 

Case 3: T3(𝐗𝐗) = L(𝐗𝐗|θ). For a data sample 𝐱𝐱 = (x1, … , xn) we now have 418 

L(𝐱𝐱|θ) = ( θ 
1 − θ

)
∑ xin
i=1

(1− θ)mn ��
m
xi
�

n

i=1

 (64) 

with g be the identity function and h(𝐱𝐱) = 1 in (2). For fixed θ satisfying 0 <  θ < 1 and θ ≠ 1/2, 419 
we obtain that 𝐲𝐲 ∈ AL�𝐱𝐱�θ� if and only if 420 

 ( θ 
1 − θ

)
∑ yin
i=1

  ��
m
yi
�

n

i=1

= ( θ 
1 − θ

)
∑ xin
i=1

  ��
m
xi
�

n

i=1

. (65) 

As in Case 3 of Example 5.1, developing an algorithm to use (65) and determine �AL�𝐱𝐱�θ��  for 421 
calculating Ilost�𝐱𝐱�L(𝐱𝐱|θ)� from (20) is beyond the scope of this paper. 422 

As a simple example, consider the experiment of flipping a possibly biased coin twice (m = 2). The 423 
total number of heads follows a binomial distribution with the parameter θ, which is the probability 424 
of getting a head on any flip. By doing this experiment three times we generate the random variables 425 
X1, X2 , X3 with possible values 0, 1, 2. Table 5.2 shows all the possibilities and the lost information for 426 
the statistics. The small size of this example allows the computation of Ilost in Cases 2 and 3 via total 427 
enumeration.  428 

 429 
Table 5.2. Binomial Example 430 

𝐱𝐱 = (x1, x2, x3) T1(𝐱𝐱) Ilost(𝐱𝐱|T1) T2(𝐱𝐱) Ilost(𝐱𝐱|T2) T3(𝐱𝐱) Ilost(𝐱𝐱|T3) 

(0,0,0)   0 0 (1− θ)6 0 (1− θ)6 0 

(0,0,1)  

  1 
 

 

log 3 

 

(1 − θ)5θ1 

 

log 3 

 

2(1− θ)5θ1 

 

log 3 (0,1,0) 

(1,0,0) 

(1,1,0)  

2 
 

 

log
15
4

 

 

(1− θ)4θ2 

 

log
15
4

 

 

4(1 − θ)4θ2 

 
log 3 (1,0,1) 

(0,1,1) 

(2,0,0)  

2 
 

 

log 15 

 

(1− θ)4θ2 

 

log 15 

 

(1− θ)4θ2 

 

log 3 (0,2,0) 

(0,0,2) 

 
(1,1,1) 

  

  3 

 

log
5
2

 

 

 

(1− θ)3θ3 

 

log
5
2

 

 

8(1 − θ)3θ3 

 
0 

(2,1,0)       
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 431 
Now using (40), we give in Table 5.3 the entropic losses of Example 5.2 for T1, T2, T3. Note that  432 

Hlost(𝐗𝐗, T) is the same for the sum T1 and the likelihood kernel T2, which are related by a one-to-433 
one function. Hence Result 4.5 is corroborated. Also observe that Hlost(𝐗𝐗, T) is smallest for the 434 
likelihood function T3.  435 

 436 
Table 5.3. Entropic loss over different statistics for a binomial distribution 437 

 438 
 439 
 440 

 441 
 442 
Example 5.3 (Geometric Distribution). Consider a random sample 𝐗𝐗 = (X1, … , Xn) with sample 443 

data 𝐱𝐱 = (x1, … , xn) from a geometric random variable X, where the parameter θ is the probability 444 
of success on any of the series of independent Bernoulli trials for which X is the trial number on 445 
which the first success is obtained. It readily follows from [5] that  446 

P[𝐗𝐗 = 𝐱𝐱] = θn(1 − θ)∑ xi
n
i=1 −n. (66) 

Case 1: T1(𝐗𝐗) = ∑ Xin
i=1 . For fixed n, ∑ Xin

i=1  has a negative binomial distribution with 447 
parameter θ. Hence,  448 

 449 

P ��Xi

n

i=1

= � xi

n

i=1

� = �
∑ xin
i=1 − 1
n − 1

� θn(1 − θ)∑ xi
n
i=1 −n. (67) 

Thus T1(𝐗𝐗) = ∑ Xin
i=1  is an SS for θ  since it satisfies (2) with g[T1(𝐱𝐱)|θ] = θn(1 − θ)T1(𝐱𝐱)−n  and 450 

h(x1, … , xn) = �∑ xi
n
i=1 −1
n−1 �. Moreover, substitution of (66) and (67) into (8) gives  451 

P �𝐗𝐗 = 𝐱𝐱|�Xi

n

i=1

= � xi

n

i=1

� =
1

�∑ xin
i=1 −1
n−1 �

. (68) 

Then from (14) and (68) we obtain that  452 
Ilost(𝐱𝐱|T1) = log�

∑ xin
i=1 − 1
n − 1

�. (69) 

Case 2: T2(𝐗𝐗) = K(𝐗𝐗|θ). From (66), for all 𝐱𝐱 ∈ Sn, R(𝐱𝐱) = 1 and  453 

 K(𝐱𝐱|θ) = L(𝐱𝐱|θ) = � θ
1−θ

�
n

(1 − θ)∑ xi
n
i=1 . (70) 

(2,0,1)  
 

  3 
 

 

 
 

log 10 

 
 

(1− θ)3θ3 

 
 

log 10 

 
 

2(1 − θ)3θ3 

 
 

log 6 
(1,0,2) 

(1,2,0) 

(0,1,2) 

(0,2,1) 

(2,1,1)  

4 
 

 

log
15
4

 

 

(1− θ)2θ4 

 

log
15
4

 

 

4(1 − θ)2θ4 

 

log 3 (1,2,1) 

(1,1,2) 

(2,2,0)  

4 
 

 

log 15 

 

(1− θ)2θ4 

 

log 15 

 

(1− θ)2θ4 

 

log 3 (2,0,2) 

(0,2,2) 

(2,2,1)  

5 
 

 

log 3 

 

(1 − θ)1θ5 

 

log 3 

 

2(1− θ)1θ5 

 

log 3 (2,1,2) 

(1,2,2) 

(2,2,2)   6 0 θ6 0 θ6 0 

Hlost(𝐗𝐗, T1) Hlost(𝐗𝐗, T2) Hlost(𝐗𝐗, T3) 

1.4722 1.4722 1.2095 
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Thus for 0< θ < 1, there is an obvious one-to-one function between T1(𝐱𝐱) = ∑ xin
i=1  and T2(𝐱𝐱) = 454 

K(𝐱𝐱|θ) in (70). Thus from Theorem 3.5, Ilost�𝐱𝐱�T2(𝐱𝐱)� = Ilost(𝐱𝐱|T1) as given in (69).  455 
Case 3: T3(𝐗𝐗) = L(𝐗𝐗|θ). Since K(𝐗𝐗|θ) = L(𝐗𝐗|θ) from (70), then 456 

Ilost(𝐱𝐱|T3) = log�
∑ xi

n
i=1 − 1
n − 1 � (71) 

from (69). However, there is an alternate derivation of (71). For 0< θ < 1 it follows from (70) that then 457 
𝐲𝐲 ∈ AL�𝐱𝐱�θ� if and only if 458 

� yi

n

i=1

= � xi

n

i=1

.  (72) 

But for fixed positive integers x1, … , xn we have from [17] that the number of solutions �AL�𝐱𝐱�θ�� to 459 
(72) in positive integers y1, … , yn is  460 

�
∑ xi

n
i=1 − 1

n − 1 �. (73) 

Thus (71) follows for L(𝐗𝐗|θ)  from (73) and (20), so Ilost(𝐱𝐱|T1) = Ilost(𝐱𝐱|T2) = Ilost(𝐱𝐱|T3)  from 461 
Theorem 3.5. 462 

As a numerical illustration, let the random variable X denote the number of flips of a possibly 463 
biased coin until a head is obtained. Then X has a geometric distribution with the parameter θ as the 464 
probability of getting a head on any flip. Suppose this experiment is performed three times yielding the 465 
possible sample data 𝐱𝐱 = (x1, x2, x3) shown in Table 5.4. Ilost(𝐱𝐱|T) is then calculated for each of the 466 
sufficient statistics for θ of Example 5.3. Observe that the individual statistics depend on θ while the 467 
lost information does not. Moreover, Ilost(𝐱𝐱|T1) = Ilost(𝐱𝐱|T2) = Ilost(𝐱𝐱|T3) for all the sample data as 468 
established analytically above. 469 
 470 

Table 5.4. Geometric Example 471 

𝐱𝐱 = (x1, x2, x3) T1(𝐱𝐱) Ilost(𝐱𝐱|T1) T2(𝐱𝐱) Ilost(𝐱𝐱|T2) T3(𝐱𝐱) Ilost(𝐱𝐱|T3) 

(1,1,1) 3 0 θ3 0 θ3 0 
(2,1,1)  

4 
 

log 3 
 

θ3(1 − θ) 
 

log 3 
 

θ3(1 − θ) 
 

log 3 (1,2,1) 
(1,1,2) 
(2,2,1)  

5 
 

log 6 
 

θ3(1 − θ)2 
 

log 6 
 

θ3(1 − θ)2 
 

log 6 (2,1,2) 
(1,2,2) 

 (2,2,2) 6 log 10 θ3(1 − θ)3 log 10 θ3(1 − θ)3 log 10 

6. Conclusion  472 

In this paper, the Shannon information obtained from a random sample 𝐗𝐗 for a discrete random 473 
variable X with a single parameter θ was decomposed into two components: (i) the compressed 474 
information obtained by the value of a real-valued statistic T(𝐗𝐗) for the sample data 𝐱𝐱 and (ii) the 475 
information lost by using this statistic to characterize 𝐗𝐗. We focused on this lost information caused 476 
by multiple data sets having the same value of the statistic. This possibility is typical of data analysis, 477 
where the data uniquely determines the value of the statistic, but a value of the statistic does not 478 
uniquely determine the data yielding it. In other words, we answered the question: how much 479 
Shannon information is lost about a data sample when only the value of a sufficient statistic is known 480 
but not the original data. We also defined the entropic loss associated with a sufficient statistic 481 
T under consideration as the expected lost information over all possible samples to give a metric 482 
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dependent only on T. Our approach is applicable to any T, but we focused on sufficient statistics for 483 
θ for simplicity. Applications of our results were computationally intensive. 484 

 485 
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