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Abstract-Two examples are presented to illustrate the application of
dynamic programming to Pareto optimization.

I. INTRODUCTION

Recall the definition of Pareto optimization. Let u = (Ui, ..., Up), II
= (III, 0. ., lIp) E D C RP. If U; .$ II;, i = I, .0. , p, and Uj < IIj for

somej, we write u < II. The point u E D is said to be a Pareto maximum
of D, denoted u E Max* D, if u 0\: II for all II E D. Pareto minima and
Min* D have similar definitions.

In this brief note we present two examples illustrating the application of
dynamic programming to Pareto optimization. The reason for doing so is
that there have been very few examples in the literature, although various
authors have studied the relation of dynamic programming to Pareto
optimality .The earliest such results are due to Brown and Strauch [ I] who
stated a version of the principle of optimality for finite horizon models in
multiplicative lattices. Mitten [2] and Sobel [3] later analyzed ordinal
dynamic programs. More recently, Henig [4] has studied vector-valued
dynamic programming for the viewpoint of Markov decision processes
and reviewed the literature on this aspect. The examples here, however,
follow the work of Klotzler [5], who gave recurrence relations under
certain separability and monotonicity assumptions as well as the von
Neumann-Morgenstem property. We refer to that work.

II. EXAMPLES

In both of the following examples the above assumptions are obviously
satisfied. The first example is discrete and involves finding all Pareto
shortest paths in a directed network, a problem of interest in its own right.
The second example is continuous and illustrates how a sequential
solution can simplify certain problems.

Example I: Consider a directed network (N, A ), where N = { I, ...,

n} is the set of n nodes, A C N x N is the set of arcs, and associated
with each arc U, k) E A is a vector weight djk = (djni, ..., djnp) E RP.
All Pareto shortest paths in (N, A) between nodes I and r = 2, 0. 0, n



will be obtained here; i.e., we find

Min* [ ~ djk: r E p, J ' r=2, ..., n (1)
U.k)E.

where P, is the set of paths from I to r in (N, A) and the summation is a
vector sum. We assume that A contains no loops since a loop either is not
part of a Pareto shortest path or is part of an infinite number and also that
djk * (0, ..., 0) for U, k) E A to avoid degenerate circuits. No
restrictions are made on the signs of the components of the djk.

Problem (I) reduces to the standard shortest path problem whenp = I
for which Bellman [6] has used the functional equations of standard
dynamic programming. To use the recurrence relations to Klotzler, let the
stages correspond to the number of arcs in a path, the states to nodes, the
decision variables to the next node in a path, and the stage returns to the
distance to the next node. Define L~ to be the set of .'lengths" of all
Pareto paths from node I to node i containing k or fewer arcs. We seek
L7-1, i = 2, ..., n. An algorithm for obtaining the L~-! is given below;
the actual paths can be deduced by a substitution process. The validity of
this algorithm can also be established without dynamic programming [7].

Step 1: Set di; = (0, ..., 0), i = 1, ..., n, and dij = «(X), ..., (X), i
* j, if there is no arc from i to j. Set k = I and L: = { d I;} , i = I, ...,
n.

Step 2: For i = I, ..., n, setL~+1 = Min* Uj=1 [dj; + LJJ, where
dj; + LJ = {dj; + IJ:ljk E LJ}.

Step 3: If L~+I = L~, i = I, ..., n, stop. Otherwise, go to Step 4.
Step 4: If k = n -I, stop. A negative circuit exists. Otherwise, set k

= k + I and go to Step 2.
As an illustration, this algorithm is applied to the very simple network

of Fig. I. For Fig. I we easily compute the following:

L:={(O, 0)}, L~={(8, 1)}, L~={(7, 2)},

L~= {(1, 2)}, L:= {«(X), (X)};

L~={(O, 0)}, L;={(8, 1)}, L~={(7, 2)},

L~={(I, 2)}, L~={(3, 3)};

L~={(O, 0)}, L~={(8, 1)}, L~={(7, 2), (6, 3)},

L~= {(1, 2)}, L~= {(3, 3)};

L~={(O, 0)}, L~={(8, 1), (7, 4)}, L;={(7, 2), (6, 3)},

L:={(I, 2)}, L:={(3, 3)};

L:=L:, i=I,...,5,sostop.

Thus, for example, the two Pareto shortest paths from node I to node 2
are 1-2 and 1-4-5-3-2 yielding .'lengths" of(8, 1) and 7, 4), respectively.

Example 2: Consider the problem

Max* {(2xI- 3xh 4xl +x;) : XI +X2oS 12; XI, X22:0}. (2)

Let two stages correspond to the two variables and decompose the
separable two-dimensional objective function into (2x1 -3xh 4x! + x~)
= (2x!, 4xJ + ( -3xh x~). The individual stage return functions are then
(2xI, 4xJ at stage I and ( -3x2, x~) at stage 2. We let the state Si represent
the maximum amount that can be allocated to Xi at stage i, so S2 = 12 and
SI = S2 -X2. Thus

JI(s.)=Max* {(2xI, 4x.) : O~xl~sl : xi~O}. (3)

Clearly in (3) the optimal x~ = SI for whichJI(sJ = {(251, 4sJ}. It then
follows that

J2(12)=Max* {(-5x2+24, X~-4X2+48) : O~x2~12}. (4)

Since -5x2 + 24 is strictly decreasing for X2 2: 0 while x~ -4X2 + 48 is
nondecreasing for X2 2: 2 and nonincreasing for X2 :$ 2, it is easy to




