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Abstract

This research uses a two-stage stochastic programming (2SP) approach to optimize personal adaptive treat-

ment strategies for pain management. Transition models are represented by piecewise linear networks (PLN).

A multi-objective mixed integer linear program (MILP) is developed to optimize treatment strategies for

patients based upon on these transition models. A convex quadratic program (QP) is developed to deter-

mine weights for multiple levels of multiple pain outcomes that are consistent with surveys submitted pain

management experts.
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1. Introduction1

Everyone experiences pain at various times and to varying degrees. Indeed, pain is the most common2

reason for people to seek medical assistance [1]. “Pain is always something that hurts” [2]. When a patient3

visits a physician, the most common symptom is pain, which is highly subjective, and the perception of pain4

involves various brain-peripheral feedback mechanisms.5

The pain experience involves three interactive domains: physiological, psychological, and social (i.e.,6

the biopsychosocial model) as shown in Figure 1. Treatment of pain involves dealing with the complex7

biopsychosocial changes of patients. For example, pain and depression are related to each other; people who8

have depression report more pain than non-depressed individuals. Therefore, many biopsychosocial factors9

are involved for treatment when a patient suffering from pain visits a physician. Some of these factors10

determine the causes of pain, duration, pain intensity, etc. Pain can be short-term or long-term, and its11

type and level can differ from patient to patient. Short-term pain that lasts a maximum 6 months is also12
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known as acute pain. If short-term pain is not appropriately treated, then it can persist and become chronic,13

which is also known as chronic pain. Research shows that two-thirds of elderly people suffer from at least14

two chronic conditions [3]. Acute pain is fast, intense, and localized, while chronic pain is slow, diffuse, and15

prolonged [4]. People with chronic pain require more treatment than patients with acute pain. Chronic pain16

reduces a person’s quality-of-life and working capability [5]. Many patients are somewhat afraid to report17

pain because they fear: having a surgery; long-term treatment; losing social independence; etc. In some18

cases, they are unable to verbalize their pain condition to physicians. Surgery, cancer, and bone fractures19

usually cause acute pain. By contrast, arthritis, cancer, diabetic neuropathy, and back pain syndrome often20

cause chronic pain [6]. Chronic pain is related to medical and physical conditions as well. In most instances,21

the best pain management involves coordinated drug and non-drug therapies [7].22

Figure 1: The Three Biopsychosocial Domains of Pain

A total of 65 million people have lower back pain in the United States [8]. In the next 30 years, the23

number of older adults in the United States is expected to double [9]. Two-thirds of older adults suffer from24

back pain. For example, Cooner and Amorosi conducted a telephone poll in New York City that showed25

that almost 50% of elderly people suffer from chronic pain and have taken pain medications. 51.4 million26

inpatient surgical procedures were performed in 2010 [10], and more than 25 million outpatient surgeries are27

performed each year in 5300 certified surgery centers in the United States [11]. Many surgeries are conducted28

on older adults. Among these, 80-85% experience some health problems that cause pain. In order to mitigate29

this unwanted pain, 45% of older adults visit at least three physicians [12].30

Moreover, many traditional pain management therapies have recommended using highly addictive treat-31

ments such as opioids. These prescriptions have led to a crisis in the United States [13]. More than 750,00032

people have died since 1999 from a drug overdose [14], and two out of three drug overdose deaths in 201833

involved an opioid [15]. Consequently, the National Institutes of Health and the Department of Health34

and Human Services now recommend physicians treating pain management to alternative less addictive35
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treatments [13].36

The Eugene McDermott Center for Pain Management at UT Southwestern Medical Center, which we37

refer to as the Center, administers an interdisciplinary two-stage pain management program for chronic38

pain. Figure 2 demonstrates that, at the beginning of the program, a patient receives a preliminary pre-39

treatment evaluation, which includes review of past medical records, the patient’s demographic information,40

and biopsychosocial examinations.41

Pre-treatment

Evaluation with

Initial Treatment

Mid-treatment Eval-

uation with Modified

Treatment

Post-treatment

Evaluation

Stage 1 Stage 2

treatment 1 treatment 2

42

Figure 2: Two-stage Interdisciplinary Pain Management Program at the Center [16]43

Based on these evaluations, physicians prescribe a treatment plan for the patient, which is the beginning44

of Stage 1. After a certain period of time, the patient visits the Center again and receives a mid-treatment45

evaluation. Physicians then review the pain outcomes of the evaluation and prescribe a new set of treatments46

to the patient if needed, which is the end of Stage 1 and the beginning of Stage 2. The post treatment47

evaluation, where final pain outcomes are measured, ends the two-stage pain management program. Patients48

receive another evaluation program after one year of this two-stage pain management program. In this49

research, we will not consider this last evaluation. The time duration between each stage varies from patient50

to patient but usually ranges from 6 months to 1 year.51

The rest of this paper is organized as follows. In section 2, we describe background of pain outcomes, literature52

related to multi-objective health care optimization and piecewise linear networks, and the contribution of53

this research. Section 3 presents a two-stage stochastic programming (2SP) formulation for an adaptive54

interdisciplinary pain management program, including a mixed integer linear program (MILP) formulation55

that uses piecewise linear network (PLN) transition models and a convex quadratic program (QP) formulation56

to determine weights for multiple pain outcomes. In section 4, we discuss a case study, treatment analysis,57

and final pain outcome comparisons among this research, Wang et al. [17], and observed data in both stages.58
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2. Background, Literature, and Contribution59

In this section, we discuss background on pain outcomes, literature on multi-objective health care optimiza-60

tion, and piecewise linear networks. Finally, we discuss the contribution of this research.61

2.1. Background on Multiple Pain Outcomes62

The Center uses multiple pain outcome measures to identify pain intensity. These outcome measures include63

the Beck Depression Inventory (BDI), the Dallas Pain Questionnaire (DPQ), the Oswestry Pain Disability64

Index (OSW), the Pain Drawing Analogue (PDA), the Multidimensional Pain Inventory (MPI), the 36-item65

Short Form Survey Physical Component Score (SF-36 PCS), and the 36-item Short Form Survey Mental66

Component Score (SF-36 MCS). However, the dataset we get from the Center consists of five pain outcome67

measures, namely OSW, PDA, BDI, SF-36 PCS, and SF-36 MCS. Consequently, we consider these five pain68

outcome measures in this study, even though the model and general approach are amenable to additional69

and different outcome measures. .70

(a) OSW label

(b) PDA label

(c) BDI label
(d) SF-36 PCS/MCS label

Figure 3: Different pain outcomes and their Labels

OSW is a measure of perceived functional disability caused by pain, and below is a summary from the71

European Medical Tourist [18]. OSW is the most widely used measure for assessing the disability level from72

back pain. To determine OSW, a patient submits a survey with 10 sections, and each section has a score73

range of 0 to 5. Consequently, OSW has a maximum total score of 50. As shown in Firgure 3a, a patient with74
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a raw score between 0 and 10 indicates that the patient has minimal disability and usually no treatment75

is necessary. A score between 11 and 20 signifies that the patient has mild disability, so a conservative76

treatment plan is recommended. OSW from 21 to 30 signifies severe disability, so a detailed investigation of77

the pain is required. OSW in the range of 31 to 40 suggests that the patient has crippling disability, which78

requires a severe intervention. Patients with an OSW score over 40 are usually bed bound.79

For the PDA scale, patients are asked to mark their level of pain on a 10-cm visual analogue scale as shown in80

Figure 3b. This PDA outcome ranges from 0 to 10 and is classified into five levels. A PDA value between 0 to81

2 indicates that the patient essentially has no pain. PDA from 3 to 4 means that the patient is experiencing82

a little pain. A patient with a PDA score from 5 to 6 means that the patient has considerable pain. A PDA83

score from 7 to 8 indicates that the patient has a lot of pain. Patients with a PDA of 9 or 10 have the worst84

possible pain.85

BDI is a self-reported measure of symptoms of depression and is determined from a survey 21 of questions.86

Each question has a score range of 0 to 3, so BDI has a maximum score of 63 as shown in Figure 3c. A BDI87

score in the range of 0 to 10 signifies normal depression symptoms. A BDI of 11 indicates mild depression,88

and a BDI from 12 to 14 signifies the patient has moderate depression. A BDI in the range of 15 to 3089

signifies severe depression, and over 30 implies very severe depression.90

SF-36 PCS and SF-36 MCS scores are both patient-reported health status measures, which range from 0-100.91

SF-36 PCS and SF-36 MCS scores greater than or equal to 50 indicate that the patient is in good health, as92

shown in Figure 3d.93

In Figure 3, we show the breakpoints of different levels of different pain outcomes. In this research, we94

consider the normal level of pain outcomes for PDA, OSW, and BDI less than 6, less than 12, and less than95

13 respectively; a mean score greater than 50 for SF-36 is considered normal. If patients’ pain outcomes are96

in these ranges, then they are assumed to be normal patients with limited pain [7].97

2.2. Multi-Objective Health Care Optimization98

Several researchers use multi-objective optimization in the literature. Zhang et al. [19] used a multi-objective99

optimization approach for health-care facility location-allocation problems. They examine where health-care100

facilities should be located to improve the equity of accessibility, raise the total accessibility for the entire101

population, reduce the population that falls outside the coverage range, and decrease the cost of building new102

facilities. A genetic algorithm based multi-objective optimization approach is used to yield a set of Pareto103

solutions that can be used to find the most practical tradeoffs between the conflicting objectives. Cetin and104

Sarul [20] used a goal programming formulation as a multi-objective optimization approach to model a blood105

bank location. They considered three objectives, namely minimizing the total fixed cost of locating blood106
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banks, minimizing total distance between hospitals and blood banks, and minimizing an inequality index107

as a fairness mechanism for the distances. The objectives are transformed into a single objective via goal108

programming. Wei et al. [21] developed a bi-objective model that uses interchange algorithms to find optimal109

locations for preventive health care facilities. The two objectives of their optimization model were efficiency110

of the facility locations and coverage of patients. Alkhamis [22] developed a framework that uses simulation111

and optimization. The objective function is to maximize patient throughput and reduce patient waiting112

time. A deterministic budget constraint and stochastic patient waiting time are used as constraints. Baesler113

and Sepulveda [23] developed a methodology for a cancer treatment center in Florida, where a simulation114

model is incorporated into a multi-objective optimization technique. Four objectives are considered in this115

simulation optimization model. The objectives include minimization of patients waiting time and closing116

time, and maximization of chairs and nurse utilization.117

In this research, we consider the minimization of treatment cost and adverse pain outcomes in our optimiza-118

tion model. The aforementioned five pain outcomes are considered, and they are balanced based upon results119

from questionnaires. Questionnaires are widely used to identify treatment outcomes in chronic pain. These120

types of questionnaires may consist of more than 300 questions, which is too long for patients to complete.121

Huang et al.[24] used machine learning to find out the best subset of questions from the questionnaire. Their122

classification results shows the subsets have high relationships with treatment outcomes. Thus, they reduce123

irrelevant questions from the questionnaire for patients with pain. Ali et al. [25] developed an automated124

delivery system for clinical guidelines (DSCG) to assist physicians in diagnosing and treating patients with125

chest pain. These guidelines, which are selected from a knowledge based server, are used to improve efficiency126

in both diagnostic and treatment stages. The delivery system recommends optimal treatment plans based127

on the most probable diagnosis, which improve patient outcomes. Computer based protocols in emergency128

departments are used to forecast myocardial infarction. Goldman et al. [26] found that computer based129

protocols reduce the admission of patients to emergency departments by 11.5%.130

2.3. Piecewise Linear Networks and Models131

In dynamic systems, state transition models predict how the state of the system evolves, and in this research,132

we use PLN models to predict how patients and patient outcomes respond to treatments. These PLN models,133

shown in Figure 4, are developed by Rowat et al. [27]. The decision space is divided into multiple networks,134

and each network consists of a centroid and a set of linear regression models for the response variables. A135

weighted distance measure is used to determine the network membership. The weighted L1 norm distance136

is used to calculate the distance measure.137

Although this is the first research to use PLN models to predict patient outcomes, several researchers have138
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Figure 4: Structure of Piecewise Linear Network [27]

used other general piecewise linear models to do so. Matthews et al. [28] studied the changes in risk factors139

of coronary heart disease in midlife women using a piecewise linear model, consistent with ovarian aging,140

and a linear model, consistent with chronological aging. The piecewise linear model provides a better fit.141

Reynolds and Chiu [29] used a piecewise regression model in their study of understanding thermoregulatory142

transitions during hemorrhaging in rats.143

2.4. Background on Pain Management Optimization Research144

Attempts to optimize adaptive treatment strategies for chorinc pain patients have been made in the past.145

Lin et al. [16] developed a stochastic dynamic programming approach using a statistical design and analysis146

of computer experiments method developed by Chen et al. [30]. They employed approximate dynamic147

programming (ADP) solution methods where transition models were constructed empirically, and the future148

value function was approximated using state space discretization based on a latin hypercube design. By using149

ADP, they were able to identify a recommended treatment regime, which minimized pain while penalizing150

excessive costs. They determined treatments using a local optimization solver, even though the problem151

was a constrained non-convex optimization problem. Consequently, their approach cannot guarantee global152

optimality.153

LeBoulluec et al. [31] developed a method based on the inverse probability of treatment weighted (IPTW)154

method to mitigate concerns about endogeneity for interdisciplinary pain management data. Endogeneity155

happens when treatment variables at a previous stage can influence patient variables at the current stage,156

which will in turn influence the treatments at the following stage [32]. Their proposed IPTW method consists157

of five steps. Step 1: Build a model to identify significant treatments. Step 2: Check the selected treatments158

from Step 1 for conditional independence. Step 3: If the treatments are independent of each other, fit a159

logistic regression model for each treatment. Step 4: Calculate weights based on the fitted models from Step160
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3. Step 5: Fit the weighted model. This IPTW method eventually removes the bias in estimating the true161

effect of treatments on the outcomes.162

Wang et al. [17] developed a 2SP model for adaptive pain management, where transition models that163

were used as constraints were non-convex and quadratic. These nonconvex quadratic models were then164

refitted using a piecewise linear approximation. Prediction accuracy of the refit model (hereafter S-L2SP165

model) was higher than the original model, and at the same time, the S-L2SP model maintained all of the166

original models assumptions. By using these mathematical models, they found an optimal adaptive treatment167

strategy for patients. The treatment recommendations generated by the S-L2SP model were better than168

those from the original non-convex mixed-integer non-linear (MINLP) model in terms of solution quality169

and time required for optimization. They showed that treatment recommendations generated by the S-L2SP170

model were 12 times more likely to achieve a normal pain level compared with the treatments in the observed171

dataset. The objective value achieved by the S-L2SP model in 20 seconds using 4225 scenarios is less than172

the objective value from the MINLP using 400 scenarios, which required 15 minutes of computational time.173

LeBoulluec et al. [31] addressed time varying confounding when treatments are independent in their IPTW174

method; however, in most cases these treatments exhibit some correlation. Ohol [33] extended the IPTW175

framework of LeBoulluec et al. [31] to address time varying confounding in a two-stage adaptive interdisci-176

plinary pain management program when treatments exhibit correlation. Most of the literature on handling177

time varying confounding use methods, such as inverse probability of treatment weighting and g-computation,178

to obtain consistent estimates for a single treatment. Ohol [33] extended these methods to multiple treat-179

ments, and, using a simulation study, highlighted the challenges faced in estimating these treatment effects.180

2.5. Contribution181

This research proposes a multi-objective 2SP optimization approach to find optimal treatment strategies for182

adaptive pain management in which the transition models, which are used in constraints, in the multiple183

pain outcomes model are PLN models. We develop a MILP to integrate these PLN models into the 2SP184

optimization. To see the relationship between different pain outcomes, we develop a survey, which asks ex-185

perts to conduct pairwise comparisons between different levels of different pain outcomes. Pain management186

experts submit the surveys. However, the survey results are not entirely consistent because survey input is187

subjective and varies from expert to expert. To determine weights to penalize different pain outcomes, we188

develop a convex quadratic programming (QP) model that attempts to find a consensus within the surveys.189

We compare the results with observed data, and the S-L2SP model, where Wang et al. [17] used a regression190

approach to develop transition models on a single pain outcome measure. Finally, we conduct odds ratio191

analysis to compare the final pain outcomes of the optimization model with observed data and the S-L2SP192
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model.193

3. Math Programming Models194

In this section, we describe mathematical models to determine adaptive treatment strategies. Section 3.1195

shows the two-stage stochastic programming formulation. In section 3.2, we show how a convex quadratic196

programming formulation is used to determine a set of pain outcome weights that are most consistent with197

a set of surveys. Section 3.3 discusses a mixed integer linear programming formulation to integrate PLN198

models into the original 2SP.199

3.1. Stochastic Programming Formulation200

Similar to this research, the S-L2SP model in Wang et al. [17] described a general two-stage stochastic201

programming formulation for optimizing treatment in adaptive interdisciplinary pain management program.202

This S-L2SP model considered only one pain outcome, namely OSW. As described in Section 2.1, pain203

management physicians and programs usually consider multiple pain outcomes. Consequently, in this section,204

we modify the S-L2SP model in Wang et al. [17] to consider multiple pain outcomes.205

Let I be the set of pain outcomes (indexed by i). As in the S-L2SP model, the objective function consists of206

two parts—a penalty function on pain outcomes, Pi(•), and a cost function for treatment usage, C(•). The207

difference between the penalty function Pi(•) in this research and the one in the S-L2SP model is that Pi(•)208

considers multiple pain outcomes. As in the S-L2SP model, the purpose of the cost function C(•) is to reduce209

treatment usage to avoid over medication and can be used to reduce the prescription of potentially highly210

addictive treatments, such as opioids. Similar to the S-L2SP model, the cost function used in this research is211

from Lin et al. [16]. Parameter ρ is a treatment cost coefficient, which is used to maintain a balance between212

the pain outcomes and the treatment cost function. Let variables Yi1(εi1) and Yi2(ε1, εi2) be pain outcome213

i at stages 1 and 2 with uncertainties εi1 and εi2, and Y1(ε1) and ε1 are vectors of with components Yi1(εi1)214

and εi1, ∀i ∈ I. Let s1 is a constant vector of the patient’s state variables at the beginning of stage 1, which215

could include the patient’s entire medical history, s2 is the vector of state variables at the beginning of stage216

2, xt is the vector of treatment decisions at stage t = 1, 2, with component xīt being the dose or usage of217

treatment ī, Γt is the set of feasible treatment decisions, Λ is a set of treatment interaction restrictions,218

function hit is the state transition model that updates the patient’s pain outcome at the end of each stage219

for all i ∈ I, and random vector εt represents the uncertainty in the state transition models.220

The general multi-objective 2SP model for this pain management program is shown in model (1).221
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min
∑
i∈I

E
(
Pi(Yi2(ε1, εi2))

)
+ ρ
(
C(x1) + E(C(x2(ε1)))

)
(1a)

subject to:

Yi1(εi1) = hi1(s1, x1, εi1) ∀i ∈ I; (1b)

Yi2(ε1, εi2) = hi2(s2(ε1), x2(ε1), εi2) ∀i ∈ I; (1c)

xī1x
j̄
1 = 0, xī2(ε1)xj̄2(ε1) = 0 ∀(xī, xj̄) ∈ Λ× Λ; (1d)

s2(ε1) = [s1, x1, Y1(ε1)] ; (1e)

x1 ∈ Γ1, x2(ε1) ∈ Γ2. (1f)

Constraint set (1b) shows transition models for all pain outcomes at the end of stage 1, while constraint set222

(1c) is for transition models at the end of stage 2. Equation (1d) ensures that some treatments that have223

adverse interaction are not assigned to patients simultaneously. The state variables in stage 2 include the224

set of stage 1 state variables, stage 1 decision variables, and pain outcomes of stage 1, which is shown in225

equation (1e). This equation carries information from stage 1 to stage 2. Equation (1f) ensures that the226

treatment decision variables in both stages 1 and 2 are within a feasible region.227

3.2. Convex Quadratic Programming Formulation to Determine Weights228

As mentioned previously, we consider five pain outcomes in this research, which are OSW, PDA, BDI, SF-36229

PCS, and SF-36 MCS, and we must determine penalty weights that strike a balance among the different pain230

outcomes. Consequently, we survey pain management experts to determine the relationships among these231

pain outcomes. The survey is a pairwise comparison of different levels of different pain outcomes, developed232

by the authors, from which we can derive relative importance measures from these comparisons. Both the233

survey and the derivation of the relative importance measures are shown in Appendix E. However, survey234

results may be inconsistent among pain management experts. To determine pain outcome penalty weights235

that are most consistent with a set of surveys, we use a convex quadratic programming model.236

Consider the following sets, parameters, and variables. Let Ji be the set of levels of each pain outcome i ∈ I237

(indexed by j). Let uij be a penalty weight of pain outcome i ∈ I for level j ∈ Ji. Let K be the set of238

surveys (indexed by k). Let parameter σ > 1 be a targeted weight ratio between consecutive levels of the239

same pain outcome. For each (i, î) ∈ I × I, î > i, j ∈ Ji, ĵ ∈ Jî, k ∈ K, let parameter ωijîĵk be the relative240

importance of the j-th level of pain outcome i with the ĵ-th level of pain outcome î from survey k. For each241

pain outcome i ∈ I and each level j ∈ Ji \ {|Ji|}, let variable vij be the inconsistency of weights between242
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consecutive levels j and j + 1 of pain outcome i. For each (i, î) ∈ I × I, î > i, j ∈ Ji, ĵ ∈ Jî, k ∈ K, let243

variable zijîĵk be the inconsistency of the weight between the j-th level weight of pain outcome i and the244

ĵ-th level weight of pain outcome î derived by survey k.245

The convex quadratic program to determine pain outcome penalty weights is given by model (2).246

min
∑
i∈I

∑
j∈Ji\{|Ji|}

v2
ij +

∑
i∈I

∑
j∈Ji

∑
î∈I
:̂i>i

∑
ĵ∈Jî

∑
k∈K

z2
ijîĵk

(2a)

subject to:

ui1 ≥ 1 ∀i ∈ I; (2b)

ui(j+1) ≥ uij ∀i ∈ I, j ∈ Ji \ {|Ji|}; (2c)

ui(j+1) + vij ≥ σuij ∀i ∈ I, j ∈ Ji \ {|Ji|}; (2d)

ωijîĵkuij − uîĵ = zijîĵk ∀(i, î) ∈ I × I, î > i, j ∈ Ji, ĵ ∈ Jî, k ∈ K; (2e)

vij ≥ 0 ∀i ∈ I, j ∈ Ji \ {|Ji|}; (2f)

zijîĵk ≥ 0 ∀(i, î) ∈ I × I, î > i, j ∈ Ji, ĵ ∈ Jî, k ∈ K. (2g)

The objective (2a) minimizes the inconsistencies of the penalty weights based upon the set of surveys.247

Constraint set (2b) restricts the lowest level of penalty weights to be greater than or equal to 1. Since248

the weight for higher levels of pain should be greater than or equal to that of lower levels, constraint set249

(2c) includes hard constraints that ensure that the weight values between consecutive increasing levels are250

non-decreasing. Constraint set (2d) includes soft constraints that encourage consecutive pain levels within251

the same pain outcome to have a ratio of at least σ. When this ratio is unmet, the variable vij is positive252

and penalized in the objective function. In the case study, we choose σ = 3 based upon conversations with253

domain experts [7]. Constraint set (2e) shows that the j-th level weight of i-th pain outcome is ωijîĵk times254

more important than the ĵ-th level of the î-th pain outcome for each survey k ∈ K. This pairwise comparison255

of different levels of different pain outcomes is treated as a soft constraint. Survey inconsistency penalty256

zijîĵk is also included in constraint set (2e) and minimized in the objective funciton. Constraint sets (2f)257

and (2g) show the lower bounds for decision variables.258

Using the penalty weights uij , ∀i ∈ I, j ∈ Ji, from model (2), we determine each penalty function, Pi(•),259

∀i ∈ I. Because OSW, PDA, and BDI have five levels, while SF-36 PCS and SF-36 MCS have only two260

levels, their penalty functions have different structure. For OSW, PDA, and BDI pain outcomes, the penalty261

function passes through the midpoints of the level limits at the u penalty weights, as well as the origin.262
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Specifically, for pain outcome i = 1, . . . , 3 and level j ∈ Ji, let Lij be the lower limit of pain outcome Y2i at263

level j as shown in Figures 3a–3c, which are also given in Table 1. In addition, let Li6 be the upper limit264

of outcome i. The penalty function on pain outcome Pi(•) for all i = 1, ..., 3 is defined as the step function265

given in (3).266

Table 1: Lower limits for each level of OSW, PDA, and BDI

Lij OSW(i = 1) PDA(i = 2) BDI(i = 3)

Li1 0 0 0
Li2 10 2 10
Li3 20 4 12
Li4 30 6 14
Li5 40 8 30
Li6 50 10 63

Pi(Yi2) =



2ui1
Li2−2Li1

(bYi2c − Li1) Li1 ≤ Yi2 ≤ Li2
2 ;

2(ui(j+1)−uij)
Li(j+2)−Lij

(
bYi2c −

Lij+Li(j+1)

2

)
+ uij

Lij+Li(j+1)

2 < Yi2 ≤
Li(j+1)+Li(j+2)

2 ,∀j = 1, .., 4;

2(ui5−ui4)
Li6−Li4

(
bYi2c − Li4+Li5

2

)
+ ui4

Li5+Li6
2 < Yi2 ≤ Li6.

(3)

By contrast, the penalty functions for SF-36 PCS and SF-36 MCS are step functions with only single steps267

at what are considered normal versus abnormal outcomes. Specifically, for pain outcome i = 4, 5 the step268

function is given in (4).269

Pi(Yi2) =


ui1 0 ≤ Yi2 ≤ 50;

ui2 Yi2 > 50.

(4)

3.3. Mixed Integer Linear Programming for Piecewise Linear Network Models270

In this research, we use PLN models to predict transitions. PLN models predict multiple response variables271

while considering correlations among them. Such multiple response models reduce prediction errors and272

improve the predictive accuracy as compared to developing individual prediction models of each response273

variable separately on the same set of predictor variables [34].274

State transition models for pain outcomes hi1 and hi2, for all i ∈ I, are in constraints (1b) and (1c) in the275

2SP model (1). Each network has a centroid and a set of linear regression models for the response variables.276

To determine the predicted responses for a set of independent variables, a weighted `1 distance measure277

determines to which network centroid the set of independent variables is closest. Then the linear regression278
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models within the selected network determine the predicted responses. To incorporate these PLN transition279

models, in place of hi1 and hi2, into our optimization model, we must introduce additional binary and280

continuous variables and constraints. To simplify the notation in this section, we omit the stage subscript t281

from 2SP model (1), and we assume that we can represent a state transition model hi, ∀i ∈ I, with set of282

general features N (indexed by n), for either a treatment variable x or a state variable s.283

Consider the following sets, parameters, and variables. Let Ψ be the set of networks (indexed by ψ). Let284

parameter w̄ψn be the centroid value for network ψ ∈ Ψ and feature n ∈ N . For each n ∈ N , let decision285

variable wn be the value of feature n, and for each ψ ∈ Ψ, let decision variables πψ and ηψn be binary286

variables such that287

πψ =


1 if wn is in Network ψ

0 otherwise;

ηψn =


1 if wn ≥ w̄ψn

0 otherwise.

(5)

For each network ψ ∈ Ψ, each pain outcome i ∈ I, and each feature n ∈ N , let parameter βψin be the288

regression coefficient. Similarly, let βψi0 be the intercept coefficient for each pain outcome i ∈ I and each289

network ψ ∈ Ψ. For each feature n ∈ N , let parameter bn be the distance measure weight. Let variable290

Yi be the outcome of the PLN transition models for each pain outcome i ∈ I, and let parameter M be a291

big number. For each network ψ ∈ Ψ and each feature n ∈ N , let variables wψ+
n and wψ−n be the value of292

decision variable wn, whether it is greater than or less than the centroid of network ψ, respectively. Let dψn,293

defined in equation (6g), be the weighted distance variables for each network ψ ∈ Ψ and each feature n ∈ N .294

The MILP transition constraints are formulated by the following:295

−M(1− πψ) + βψi0 +
∑
n∈N

βψinwn + εi ≤ Yi

≤ βψi0 +
∑
n∈N

βψinwn + εi +M(1− πψ) ∀i ∈ I, ψ ∈ Ψ; (6a)

∑
ψ∈Ψ

πψ = 1 (6b)

∑
n∈N

dψn ≤
∑
n∈N

dψ′n +M(1− πψ) ∀(ψ,ψ′) ∈ Ψ×Ψ, ψ′ 6= ψ; (6c)

w̄ψnηψn ≤ wψ+
n ≤Mηψn ∀ψ ∈ Ψ, n ∈ N ; (6d)

−M(1− ηψn) ≤ wψ−n ≤ w̄ψn (1− ηψn) ∀ψ ∈ Ψ, n ∈ N ; (6e)

wn = wψ+
n − wψ−n ∀ψ ∈ Ψ, n ∈ N ; (6f)
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dψn = bn(w̄ψn − 2w̄ψnηψn + wψ+
n − wψ−n ) ∀ψ ∈ Ψ, n ∈ N ; (6g)

πψ ∈ {0, 1} ∀ψ ∈ Ψ; (6h)

ηψn ∈ {0, 1} ∀ψ ∈ Ψ, n ∈ N ; (6i)

Ȳi = max
(

0, Yi

)
∀i ∈ I. (6j)

If the decision variables wn, n ∈ N , are in network ψ, then constraint set (6a) ensures the pain outcomes Yi,296

i ∈ I, are equal to the regression models within the network ψ; otherwise, the constraints are relaxed (6a).297

Constraint (6b) guarantees only one network is used. Constraint set (6c) ensures that for each network pair298

(ψ,ψ′) ∈ Ψ × Ψ and each feature variable n ∈ N , the sum of the weighted distance variables dψn, is less299

than or equal to the sum of the weighted distances of all other networks ψ′ where ψ′ 6= ψ. Consequently,300

this constraint set determines the selected network. Constraints (6d)–(6f) link the decision variable wn to301

variables wψ+
n and wψ−n based upon whether wn is greater than or less then centroid values w̄ψn . As in the302

S-L2SP model, constraint set (6j) makes sure that non-negative pain outcomes are used in the model. Using303

PLN models for transition model hi, ∀i ∈ I, we replace constraints (1b) and (1c) with constraints (6a)-(6j)304

for each stage 1 and 2.305

The revised 2SP model, denoted as M-L2SP, is shown in (7).306

min
∑
i∈I

E
(
Pi
(
Ȳi2(εi1, εi2)

) )
+ ρ
(
C(x1) + E(C(x2(εi1)))

)
subject to: (1d) - (1f), and (6a) - (6j) for each stage 1 and 2.

(7)

4. Case Study307

This section details computational results based on the mathematical models discussed in section 3. Section308

4.1 describes the data set used in this study, decision variables, and state variables. Analysis of weights from309

model 2 are discussed in section 4.2. Section 4.3 shows the M-L2SP model parameters used in this research.310

Treatment analysis comparing the M-L2SP model with that of the S-L2SP model and the observed data in311

both stages is described in section 4.4. Final pain outcome comparisons among the M-L2SP model, observed312

data, and the S-L2SP model are given in section 4.5.313

4.1. Data314

The data set used in this research is from the Eugene McDermott Center for Pain Management at UT315

Southwestern Medical Center. It has 294 observations, which means 294 patients completed both stage 1316

and stage 2. The data are divided into training and testing datasets consisting of 235 and 59 observations,317
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respectively. The data set consists of 62 state variables, 5 mid-pain outcomes, 5 post-pain outcomes, 14318

stage 1 decision variables, and 13 stage 2 decision variables. In stage 1, there are 8 pharmaceutical treatment319

variables and 6 procedural treatment variables, while in stage 2, there are 8 pharmaceutical variables and320

5 procedural variables. In Appendix A, we describe these treatment variables in more detail. Procedural321

variables are binary, while pharmaceutical variables are discrete. We use PDA, OSW, BDI, SF-36 PCS, and322

SF-36 MCS pain outcomes in this optimization model as described in section 2.1. We use a two-stage feature323

selection method to find optimal features [27]. We solve the optimization problem to determine treatment324

policy, and we compare the treatment policy with observed data and policies found in the S-L2SP model.325

We code all math optimization models in the AMPL modeling language, and we use IBM ILOG CPLEX326

12.7.0.0 to solve the M-L2SP model on a NEOS server [35, 36, 37] with the number of threads equal to327

1. The program terminates if a relative tolerance on the gap between the best integer objective and the328

objective of the best node remaining are within 0.01.329

4.2. Pain Outcome Penalty Functions330

Figure 5 shows piecewise linear penalty functions for all five pain outcomes derived from surveys of two331

pain management experts and weights from the convex quadratic programming model that is described in332

section 3.2. From Figures 5a–5c, we observe how higher pain outcomes are penalized more compared to lower333

scores for OSW, PDA, and BDI. Figures 5d and 5e show that SF-36 scores below 50, which suggests that a334

patient needs medication, are more penalized than those above 50, which is considered in the normal range335

of pain. However, the magnitudes of penalties on the SF-36 scores are relatively small compared to those of336

the other pain outcomes. This is perhaps because the surveyed experts consider OSW, PDA, and BDI more337

comprehensive measures than the SF-36 scores. In addition, these penalty functions are consistent with our338

conversations with domain experts [7].339

4.3. Study of Parameters of the M-L2SP Model340

For the M-L2SP model in this research, we conduct a similar study of parameters as the one in the S-341

L2SP model for a single pain outcome model. The details of this study are given in Appendixes B, C,342

and D. Specifically, the coefficient parameter ρ in the M-L2SP model objective function (7) balances the343

cost of treatment with the expected pain outcome penalties described in Figure 5. We use ρ = 0.05 in344

this research as justified in Appendix B. We use the sample average approximation method for two-stage345

stochastic programming along with discrete sampled scenarios to represent uncertainty [38]. We sampled 900346

scenarios, 30 in each stage, to determine solutions using the M-L2SP model. In Appendix C, we calculate347

the optimality gaps based upon Mak et al. [39] and justify this set of sampled scenarios. Appendix D348

describes the optimality gap calculations in more detail.349
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(a) Penalty function for OSW (b) Penalty function for PDA

(c) Penalty function for BDI

(d) Penalty function for SF-36 PCS

(e) Penalty function for SF-36 MCS

Figure 5: Penalty Functions for OSW, PDA, BDI, SF-36 PCS, and SF-36 MCS

4.4. Treatment Analysis350

This section compares how often treatments are used in the observed data from the Center with solutions351

from the M-L2SP and S-L2SP models for the 294 patients.352

4.4.1. First Stage Treatment Comparison353

354

16



Figure 6: First Stage Treatment Usage Analysis in Observed Dataset, S-L2SP Model, and M-L2SP Model

Figure 6 shows first-stage treatment frequency in the observed data and solutions from the S-L2SP and355

M-L2SP models. It is clear that there is disagreement in the selected treatments. The most used treatment356

in stage 1 in the observed dataset is cognitive behavioral therapy (ProcGr9 1), which is recommended to357

76% of the patients. This treatment is recommended by the M-L2SP model to 28% of patients. However, the358

treatment policy from the S-L2SP model recommends this treatment to only 10% of the patients. Physical359

therapy (ProcGr10 1) is the second most used treatment in the observed data, while it applies to 3% of the360

patients in the M-L2SP model and only 1.7% of the patients in the S-L2SP model. One thing to notice361

is that the S-L2SP model from Wang et al. [17] seldom recommends procedural treatments, while the362

observed data and the M-L2SP model select most of the procedural treatments. The reason is that when a363

physician recommends treatment to patients, they consider all the aspects of pain. In the M-L2SP model,364

we also consider five pain outcomes including BDI, which is mostly treated with procedural treatments. As365

we mentioned earlier, the S-L2SP model considers only OSW, which is why procedural treatments are not366

recommended in their solutions.367

In the M-L2SP model, the most used treatment is muscle relaxants (RxGr4 1), which are given to 30%368

of patients in the observed data. However, they are never recommended in the S-L2SP model. NSAIDs369

(RxGr2 1) are the only treatment that are recommended to more than 25% of the patients in solutions370

of the M-L2SP model (27%). They are given to 33% of patients in the observed data and recommended371

to 83% of patients in solutions of the S-L2SP model. NSAIDs are particularly useful to reduce functional372

disability, and the S-L2SP model only considers the OSW pain outcome. Consequently, NSAID’s are often373

recommended in solutions of the S-L2SP model. By constrast, the Center and the M-L2SP model consider374

other pain outcomes and are more likely to use other treatments instead of just NSAIDs.375
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4.4.2. Second Stage Treatment Comparison376

Figure 7: Second Stage Treatment Usage Analysis in Observed Dataset, S-L2SP Model, and M-L2SP Model

377

The frequencies of treatment usage in the second stage of the observed data and recommendations from378

the S-L2SP and the M-L2SP models are shown in Figure 7. In the observed dataset, we see that all379

13 treatments are recommended to patients. Block procedure (ProcGr2 2) is the least frequently used380

treatment (2%) in the observed dataset, but it is the most frequently used treatment (94%) in the M-L2SP381

model recommendations. In the S-L2SP model, Block Procedures are the most recommended treatment382

(27%) as well. Cognitive behavior therapy (ProcGr9 2) treatment is most frequently used in the observed383

dataset, but it is recommended to only one patient by both the M-L2SP and S-L2SP models. Physical384

therapy (ProcGr10 2) is the second most frequently prescribed treatment in the observed dataset, but it is385

recommended as a treatment to only one patient by the M-L2SP model. However, it is never recommended386

by the S-L2SP model. Sleeping pills (RxGr7 2) are the only treatment that is used with more than 10% of387

the patients in the observed data and in the M-L2SP and S-L2SP model solutions.388

One interesting finding is that both Tramadol (RxGr1 1) and Narcotics (RxGr3 1) are used in second stage389

if the M-L2SP solutions, but they are not used in first stage at all. This is because the penalties on these390

two treatments in the M-L2SP model in this study are not larger than the typical treatment cost. However,391

these two treatments are highly addictive substances. Since the M-L2SP model has the flexibility of adding392

new constraints to make sure that these two dangerous substances are not recommended to any patients393

in any stages, we will examine the affect of these new constraints in treatment policy generation in future394

research.395
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4.5. Final Pain Outcome Comparison396

We conduct odds ratio analysis to compare the final pain outcomes of the M-L2SP and S-L2SP models397

with the observed data. Let Qi be the sets of patients from the observed data that require treatment after398

pre-evaluation for each pain outcome i ∈ I. Let Ri be the set of patients that achieve normal pain levels399

after post-evaluation for each pain outcome i ∈ I in the observed dataset, where Ri ⊆ Qi . The odds of the400

observed data, O1i, for each pain outcome i ∈ I is calculated using O1i =
(

|Ri|
|Qi|−|Ri|

)
. We calculate the odds401

for each optimization models with the following steps: (1) Let piq be the probability that a patient’s final402

pain outcome is normal for each pain outcome i ∈ I and for each patient q ∈ Qi. (2) The number of patients403

with a normal level for outcome i ∈ I from the optimization model is N opt normali =
∑
q∈Qi piq for each404

i ∈ I. (3) The odds from the optimization models, O2i, can be estimated using O2i =
(

N opt normali
|Qi|−N opt normali

)
.405

Since we want to determine how the optimization models perform over the observed data, for each pain406

outcome i ∈ I, we use ORi =
(
O2i
O1i

)
to calculate odds ratios.407

Table 2: Pain Outcome Comparison

No. of Patients No. of Patients in normal Odds
Required trt. Pain level after trt. Ratio

PDA
Optimization

M-L2SP 210 156.7 0.61
S-L2SP 210 154.7 0.57

Observed data 210 174.0 -

OSW
Optimization

M-L2SP 256 126.8 3.59
S-L2SP 256 117.5 3.10

Observed data 256 55.0 -

BDI
Optimization

M-L2SP 145 123.8 4.49
S-L2SP 145 119.5 3.60

Observed data 145 82.0 -

SF-36 PCS
Optimization

M-L2SP 264 122.2 2.87
S-L2SP 264 110.9 2.41

Observed data 264 61.0 -

SF-36 MCS
Optimization

M-L2SP 134 100.9 1.87
S-L2SP 134 98.8 1.72

Observed data 134 80.0 -

We use a Monte Carlo sample size m = 30 for each stage with 900 scenarios in model (7) as a first-stage408

treatment policy generator. Given a first-stage treatment policy, we evaluate the optimal pain outcome409

using model (8) in Appendix C with sample size m′ = 60. Table 2 shows the number of patients that require410

treatment in the beginning of the two-stage pain management program, and the number of patients that411

achieve a normal pain level at the end of the program for all five pain outcomes. From the observed data,412

we see that 84, 38, 149, 30, and 160 patients have normal pain levels at the beginning of pain management413

program for PDA, OSW, BDI, SF-36 PCS, and SF-36 MCS pain outcomes, respectively. We then find the414

final pain outcomes for the rest of the patients in the observed dataset and optimization results.415
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Table 2 shows that the M-L2SP model policy gives better outcomes compared to the observed data set in416

the case of OSW, BDI, SF-36 PCS and SF-36 MCS, while the PDA pain outcome in the observed data is417

better compared to those results of the M-L2SP model. We also evaluate the S-L2SP model’s first-stage418

treatment policies in our evaluation model (8) to see which treatment policy is better in terms of the number419

of patients with normal pain outcomes after the pain management program. From Table 2, the M-L2SP420

model has higher odds ratios for all five pain outcomes than the S-L2SP model. However, the observed data421

outperforms both the M-L2SP and S-L2SP models in PDA.422

Observe that, the M-L2SP model performs better in each pain outcomes metrics, and it outperforms the423

S-L2SP model in BDI. This is perhaps due to the fact that BDI is fundamentally different from the other424

measures because it is purely cognitive. BDI is psychological value evaluation, while the other metrics are425

highly correlated to pain. One of the likely reasons of the M-L2SP model is doing so much better than the426

S-L2SP model in BDI than the other pain outcomes is because the M-L2SP model is considering patient’s427

psychological state.428

5. Conclusions and Future Work429

Pain is a major health problem for many people, and pain management is currently innovating because of430

the opioid crisis in the United State. In this research, we develop a multi-objective 2SP model, where the431

objective is to minimize adverse pain outcomes and treatment cost as well. We consider five pain outcomes432

in our optimization model and develop a survey to find penalty weights from the pain management experts.433

To ensure that weights are consistent, we develop a convex quadratic programming model. State transition434

models are PLN models, which are used as constraints in the optimization model. To integrate these PLN435

models into the 2SP model, we develop an MILP, denoted as the M-L2SP model. Finally, we solve the436

M-L2SP model with AMPL/CPLEX and compare pain outcomes from these solutions with those of the437

S-L2SP model from Wang et al. [17], which used non-convex quadratic transition models, and with the438

observed dataset.439

In future research, we will generate a survey of treatment preferences for the physicians. Since some physicians440

prefer some treatments, we want to include those treatment preferences in the optimization model. Moreover,441

we will study using additional penalties to avoid treatments that can cause addiction, such as Tramadol442

and other narcotics. We will also develop additional constraints based upon 3-way and 4-way treatment443

interactions to improve computational efficiency.444
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Appendices532

A. Description of Treatment Variables533

Table 3 shows the description of the treatment variables in stages 1 and 2.534

Table 3: Description of the Treatment Variables

Treatment Type
Stage 1 Stage 2

Variable Name Description Variable Name Description

Procedural

ProcGr1 1 Injection in Stage 1 ProcGr1 2 Injection in Stage 2
ProcGr2 1 Block Procedure in Stage 1 ProcGr2 2 Block Procedure in Stage 2
ProcGr4 1 Stimulation Procedure in Stage 1 ProcGr4 2 Stimulation Procedure in Stage 2
ProcGr9 1 Cognitive Behavioral Therapy in Stage 1 ProcGr9 2 Cognitive Behavioral Therapy in Stage 2
ProcGr10 1 Physical Therapy in Stage 1 ProcGr10 2 Physical Therapy in Stage 2
ProcGr11 1 Number of Additional Procedures in Stage 1

Pharmaceutical

RxGr1 1 Tramadol in Stage 1 RxGr1 2 Tramadol in Stage 2
RxGr2 1 NSAIDs in Stage 1 RxGr2 2 NSAIDs in Stage 2
RxGr3 1 Narcotic in Stage 1 RxGr3 2 Narcotic in Stage 2
RxGr4 1 Muscle Relaxant in Stage 1 RxGr4 2 Muscle Relaxant in Stage 2
RxGr5 1 Antidepressant in Stage 1 RxGr5 2 Antidepressant in Stage 2
RxGr6 1 Tranquilizer in Stage 1 RxGr6 2 Tranquilizer in Stage 2
RxGr7 1 Sleeping Pills in Stage 1 RxGr7 2 Sleeping Pills in Stage 2
RxGr8 1 Others in Stage 1 RxGr8 2 Others in Stage 2

B. Treatment Cost Coefficient535

Solving M-L2SP model with ρ = 0.01, 0.05, 0.10, and 0.50 yields the average treatment costs and the average536

pain outcomes given in Table 4.537

Table 4: Determination of Treatment Coefficient

Treatment coefficient, ρ
0.01 0.05 0.1 0.5

Treatment Cost 88.67 49.60 33.56 2.52
Avg. PDA 4.86 4.90 5.02 5.90
Avg. OSW 11.27 12.13 12.91 17.08
Avg. BDI 4.42 4.79 5.25 7.99

Avg. SF-36 PCS 41.13 40.24 39.63 34.47
Avg. SF-36 MCS 51.97 50.52 48.79 47.94
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Treatment cost decreases with an increasing value of ρ, while average pain outcome scores increase for PDA,538

OSW, and BDI and decrease for SF-36 PCS and SF-36 MCS (higher scores of SF-36 are better). Based upon539

these results and conversations with domain experts [7], we choose ρ = 0.05 .540

C. The Case for Using 900 Scenarios541

(a) CPU time for Training Dataset (b) CPU time for Testing Dataset

Figure 8: Average CPU time in different scenarios in Training and Testing Datasets

We solve M-L2SP with sample sizes of 15, 20, 25, and 30 for each stage. Average CPU times for different542

sample sizes for optimizing treatments for both the Training and Testing datasets are shown in Figure 8. The543

CPU time increases along with increasing number of scenarios (sample size squared). For a small number544

of scenarios, the CPU time is low. However, these small set of scenarios may not be able to represent the545

uncertainty in the two-stage stochastic programming model. We choose to use 900 scenarios (sample size546

m = 30), because it takes an average of 10 minutes per patient to get the treatment policy, which is a547

reasonable waiting time [7].548

(a) Objective values for Training Dataset (b) Objective values for Testing Dataset

Figure 9: Average Objectives in different scenarios in Training and Testing Datasets
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Average objective values for both the Training and Testing dataset in case of policy generation is shown in549

Figure 9 in the purple color line. We evaluate the quality of the first-stage treatment solution using 2500550

and 3600 scenarios. Specifically, let x∗1(30) be the optimal first-stage treatment with sample size 30.551

min
∑
i∈I

E
(
Pi(Ȳi2(εi1, εi2))

)
+ ρ
(
C(x1) + E(C(x2(εi1)))

)
(8a)

subject to: (6a)− (6i), (1d)− (1f), with sample size of m′

x1 = x∗1(30) (8b)

The evaluated objective values are shown in red and green for m′ = 50 and m′ = 60, respectively, in Figure552

9. We choose 3600 scenarios (sample size m′ = 60) for evaluation because that gives almost same objective553

values for 900 scenarios policy generation. Moreover, we calculate optimality gap for all 294 patients using554

the method given in Mak et al. [39] with m = 30 and m′ = 60. Figure 10a shows a box plot of the upper555

limits on 99% confidence intervals on the optimality gaps for all of the patients, and Appendix D describes556

these calculations in more detail from Mak et al. [39]. Note that the average optimally gap for all 294 patients557

is 1.70, which is practically insignificant from a physician’s perspective [7]. Figure 10b shows a box plot for558

the differences between the evaluated objective value and the first-stage treatment policy objective value for559

all 294 patients, which averages 0.73.560

(a) Box Plot of the Upper Limits on 99% Confidence In-
tervals of the Optimilaity Gaps

(b) Box Plot of the Average Evaluated Objective Value
and First-Stage Treatment Policy Objectives

Figure 10: Box Plots of Optimality Gaps and Objective Value Differences

D. Optimality Gap Calculation from Mak et al. [39]561

To calculate an optimality gap using m = 30, we run M-L2SP model (7) for 30 different m = 30 samples.

Let z̄∗im be the optimal objective value ∀i = 1, ...,ml, where ml = 30. Consider the average of the objective
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values L̄(ml), given by

L̄(ml) =
1

ml

ml∑
i=1

z̄∗im.

From [39], L̄(ml) is an expected lower bound on the optimal objective function of model (7). To get an upper562

bound, we run model (8) with m′ = 60 samples, and the objective value from this model is denoted by Ū(mu),563

where mu = 3600. Let s̄l(ml) and s̄u(mu) be the sample standard deviation of z̄∗im and of objective values of564

all scenarios of model (8), respectively. Let ε̃u =
t̄mu−1,αs̄u(mu)√

mu
and ε̃l =

t̄ml−1,αs̄l(ml)√
ml

. Finally, we calculate565

a 99% confidence interval for the optimality gap for each patient using [0, [Ū(mu) − L̄(ml)]
+ + ε̃l + ε̃u], as566

described in Mak et al. [39].567

E. Survey568

As discussed in section 3.2, ωijîĵk is the relative importance of the j-th level of pain outcome i with the569

ĵ-th level of pain outcome î from survey k. We get the value of ωijîĵk from the surveys that are filled out570

by pain management experts. An example of a survey is shown in Table 5. This survey shows the pairwise571

comparison between different levels of two pain outcomes, namely OSW and PDA. Both OSW and PDA572

consist of five levels which are described in section 2.1.573

Parameter ωijîĵk has the value of 1, 3, 5, 7, and 9. If j-th level of OSW and ĵ-th level of PDA are equally574

important, then ωijîĵk equals to 1 for this particular survey k. In this case, a pain management expert will575

check column 3 of Table 5. However, if the j-th level of OSW is more important than the ĵ-th level of PDA,576

then the expert will check column (a). In the next step, the expert will check one of the columns from 4 to577

7 to specify how important column (a) compare to column (b). If it is slightly important, then ωijîĵk equals578

to 3. For moderately, strongly, and extremely important, ωijîĵk equals to 5, 7, and 9, respectively.579
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Table 5: Questionnaire for OSW vs. PDA
Objective
Pairs

Pain outcome level If pain out-
come level
(a) and (b)
are equally
important,
then check
this column.

If one is important than other one between (a) and (b), then
check the important one in pain outcome level column. Af-
ter that check one of the columns from below to show how
important that checked pain outcome level compare to other
one.

(a) (b) slightly
more im-
portant

moderately
more impor-
tant

strongly
more im-
portant

extremely
more im-
portant

OSW(0-10)
vs. PDA

� OSW(0-10) � PDA(0-2) � � � � �
� OSW(0-10) � PDA(3-4) � � � � �
� OSW(0-10) � PDA(5-6) � � � � �
� OSW(0-10) � PDA(7-8) � � � � �
� OSW(0-10) � PDA(9-10) � � � � �

OSW(11-
20) vs.
PDA

� OSW(11-20) � PDA(0-2) � � � � �
� OSW(11-20) � PDA(3-4) � � � � �
� OSW(11-20) � PDA(5-6) � � � � �
� OSW(11-20) � PDA(7-8) � � � � �
� OSW(11-20) � PDA(9-10) � � � � �

OSW(21-
30) vs.
PDA

� OSW(21-30) � PDA(0-2) � � � � �
� OSW(21-30) � PDA(3-4) � � � � �
� OSW(21-30) � PDA(5-6) � � � � �
� OSW(21-30) � PDA(7-8) � � � � �
� OSW(21-30) � PDA(9-10) � � � � �

OSW(31-
40) vs.
PDA

� OSW(31-40) � PDA(0-2) � � � � �
� OSW(31-40) � PDA(3-4) � � � � �
� OSW(31-40) � PDA(5-6) � � � � �
� OSW(31-40) � PDA(7-8) � � � � �
� OSW(31-40) � PDA(9-10) � � � � �

OSW(41-
50) vs.
PDA

� OSW(41-50) � PDA(0-2) � � � � �
� OSW(41-50) � PDA(3-4) � � � � �
� OSW(41-50) � PDA(5-6) � � � � �
� OSW(41-50) � PDA(7-8) � � � � �
� OSW(41-50) � PDA(9-10) � � � � �
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