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Abstract

We demonstrate a design and analysis of the computer experiments (DACE) approach
to the stochastic unit commitment problem for power systems with significant renewable
integration. For this purpose, we use a two-stage stochastic programming formulation
of the stochastic unit commitment-economic dispatch problem. Typically, a sample
average approximation of the true problem is solved using a cutting plane (such as the
L-shaped method) or scenario decomposition (such as Progressive Hedging) algorithms.
However, when the number of scenarios increases, these solution methods become com-
putationally prohibitive. To address this challenge, we use a multivariate adaptive
regression splines algorithm to approximate the second stage of the stochastic unit
commitment-economic dispatch problem. We conduct the experiments on a modified
IEEE118 test system and assess the quality of the solutions obtained from both the
DACE and the L-shaped methods in a replicated procedure. The results obtained from
this approach attest to the significant improvement in the computational performance
of the DACE approach over the traditional L-shaped method.

Keywords: Unit commitment, economic dispatch, stochastic programming, design and
analysis of computer experiments, multivariate adaptive regression splines, L-shaped method.

1 Introduction

Renewable energy is a critical resource in power system planning and operations, account-

ing for more than half of new U.S. power capacity installation [Perciasepe, 2017]. As the

fastest-growing energy resource in the United States [C2ES, 2018], it offers several benefits

for dispatch over conventional resources. The growth is attributed to consistently decreas-

ing installation and operating costs over the past decade. The renewable portfolio standards

set at the federal and state levels, have pushed the increase in the share of renewable gener-

ation in electricity portfolios [EIA, 2019]. Despite the economic and environmental benefits
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of renewable resources, their integration on a large scale brings forth several challenges.

For instance, the availability of intermittent renewable resources, namely solar and wind,

depends on environmental conditions. Therefore, the power generation from these sources

exhibits large fluctuations over short time periods. Due to their variability and intermittent

nature, predicting generation amount from solar and wind resources is a demanding prob-

lem. Therefore, deterministic optimization frameworks that consider a single point forecast

of uncertainty as input [Fallahi et al., 2019a,b, 2020] fail to capture the inherent stochas-

ticity of the renewable resources. In this regard, stochastic programming (SP) approaches

have been the subject of interest as they have proved to provide more realistic solutions

while addressing the stochasticity of wind and solar [Atakan et al., 2021]. However, an SP

approach exacerbates the computational challenges of optimizing the large-scale problems

that arise in power systems planning and operations.

The unit commitment (UC) and the economic dispatch (ED) models are the main com-

ponents of planning and operations in power systems. The day-ahead UC problem deter-

mines the generation and operating reserve schedules for the following day. It is a common

practice to formulate the UC problems as mixed-integer linear programming (MILP) mod-

els. After the commitment decisions are set for the generators and the reserve requirements

are met, the dispatch levels of the generators are established as the actual operating interval

approaches by solving the ED problem. The dispatch levels are determined while maintain-

ing a balance between the supply and demand and adhering to the physical constraints of

the power systems components. ED models are typically formulated as linear programming

problems [Osório et al., 2015].

The techniques used to solve stochastic UC (S-UC) problems have evolved since ini-

tially proposed by Wiebking [1977]. Decomposition techniques for S-UC were pioneered

by Takriti et al. [1996] using scenario-based schemes such as the progressive hedging al-

gorithm [Rockafellar and Wets, 1991] and later updated by Carpentier et al. [1996] with

an augmented Lagrangian. Column generation algorithms, such as the work in Shiina and

Birge [2004] have been considered for small-scale test instances with a small set of scenar-

ios. Benders decomposition (BD) has been applied in a deterministic scheme [Wang et al.,

2008] and for a robust formulation [Jiang et al., 2010, Bertsimas et al., 2012]. We refer the

interested reader to Zheng et al. [2014] for a full review of the S-UC problems. Stochastic
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ED (S-ED) problems have been frequently modeled using deterministic constraints [Liu and

Zhong, 2010], a probabilistic approach [Hetzer et al., 2008], or decomposition methods such

as stochastic decomposition (SD) [Gangammanavar et al., 2015].

Several articles leverage the decomposition-based SP framework to study the combined

stochastic unit commitment-economic dispatch (S-UCED) problem ([e.g., Bouffard and

Galiana, 2008, Wang et al., 2009, Papavasiliou and Oren, 2013]). In these works, the

UC problem is included in the first stage to determine the commitment decisions. In the

second stage, the ED problem is solved in response to a selected commitment decision and a

realization of the uncertainty. In more recent research in Sakhavand and Gangammanavar

[2020], a stochastic and simulation-based framework has been presented that uses the L-

shaped method [Van Slyke and Wets, 1969] to solve the S-UCED problem.

The SP models for S-UCED aim to identify commitment decisions that are well-hedged

against the uncertainty primarily due to demand and renewable generation. The S-UCED

models use continuous random variables to model demand and renewable generation. There-

fore, the resulting expectation-valued objective function involves high-dimensional integra-

tion. For computational tractability, a suitable representation of the underlying random

variables is generated using sampling-based methods (e.g., Monte Carlo sampling) a priori

to optimization. The continuous random variables are replaced by a finite and fixed sam-

ple of scenarios. The resulting optimization problem is referred to as the sample average

approximation (SAA) [Shapiro et al., 2014]. Once the SAA problem is generated, decompo-

sition (stage or scenario) methods can be employed to obtain a solution to the approximate

problem. This approach has been used in several S-UC [Wang et al., 2011] and S-ED [Liu

and Nair, 2015] problems.

Traditional cutting-plane algorithms, such as the L-shaped method, generate affine lower

bounding functions or cuts to approximate the expected recourse function value. These

cuts are added to the master problem as constraints. As the algorithm progresses, the

size of the master problem grows linearly, and therefore, the computational difficulty grows

significantly as the number of iterations increases. In contrast to the stage-decomposition

approach of the L-shaped method, the progressive algorithm involves solving individual

scenario problems, a primal aggregation, and a dual multiplier update steps. However, the

performance of progressive hedging, particularly on S-UC problem, is known to be sensitive
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to the parameters used in the dual multiplier update step [Cheung et al., 2015]. In any case,

both of these decomposition methods are applicable only when the underlying support is

finite or when the SAA problem is being solved. Given the notoriously challenging NP-hard

nature of the stochastic MILP problems, solving realistically large-scale S-UCED problems

remains a challenge.

An alternative approach to ease the computational effort is to apply design and analysis

of computer experiments (DACE). The DACE approach was first proposed by Sacks et al.

[1989] and later suggested by Chen [2001] for SP models to accelerate the convergence over

the traditional methods. The use of the DACE approach has shown to be appealing in

solving 2-SP models such as the work studied in Pilla et al. [2008, 2012]. This approach

exploits a metamodel as a surrogate to approximate the expectation-valued objective func-

tion of the SP model given the design parameters. To construct the metamodel, one must

implement two primary steps: (1) use an experimental design to select a set of sample

points that cover the parameters’ feasible region known as the design space; and (2) fit

a statistical model to the output of the observed sample points [Lin et al., 2001]. The

common design of experiments techniques that can be used to fill the design space include

Latin hypercubes, orthogonal arrays, and number-theoretic methods. The Latin hypercube

design was first proposed in Patterson [1954]. Later, McKay et al. [2000] extended the

design for the case of a continuous range of each variable using a uniform distribution over

each interval. As for the statistical modeling step, common statistical methods include but

are not limited to regression trees and multivariate adaptive regression splines (MARS).

MARS as a non-parametric algorithm was first proposed by Friedman [1991], which cre-

ates a piecewise linear model to discover the relationships between a response value and

the predictors that are additive or involve predictor interactions effects. For our practical

purposes, we use the latter to construct our metamodel along with the Latin hypercube

sampling (LHS) method. For a full review on selecting an appropriate experimental design

and statistical model for constructing the metamodel, we refer the interested reader to Chen

et al. [2006]. It is worthwhile to note that unlike the decomposition methods (L-shaped and

progressive hedging), the DACE approach does not rely on the finiteness of the underlying

stochastic process. In this regard, DACE approaches may aim to solve problems that do

not necessarily approximate the uncertainty with a finite discrete support set.
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Compared with existing literature, the main contributions made in this research are as

follows:

• We present a DACE-based approach that uses a metamodel to approximate the ex-

pected recourse function in the two-stage S-UCED model. The first stage of the

formulation corresponds to the unit commitment. We determine these decisions be-

fore observing a realization of the uncertainty in renewable generation. Subsequently,

we model the dispatch procedure in the second stage. The second stage responds to

a fixed commitment decision and a realization of the uncertainty in renewable gen-

eration. To the best of our knowledge, our work provides the first application of the

DACE approach to the S-UCED problem. This approach is based on the idea from

Chen [2001] and provides computationally tractable solutions in a statistics-based

framework. Moreover, we customize our approach to take advantage of the special

structure of the unit commitment problem in the first stage to generate the design of

experiments. The relationship between commitment decisions favors developing spe-

cial features on how long the generators operate and their status in certain periods.

We utilize these features to predict the second-stage recourse function value.

• We fit our statistical model for the expected recourse function using MARS. This

model controls the number of subproblems to solve in the second stage, which is

impossible to track in traditional cutting-plane algorithms. In addition, it develops

an understanding of the relationship between the recourse function and the input

space. In particular, our MARS model provides information on which generators

have the most impact on the potential operating costs.

• We compare our results with the well-recognized L-shaped method. Using the DACE

approach reveals a significant reduction in the computing time over the traditional

L-shaped method on a standard test instance with a large set of scenarios. This

allows the system operators to make planning and operational decisions within the

tight time frame considered in the electricity market.

The rest of the paper is organized as follows. In Section 2, we present the UC and

ED models as well as a detailed and general framework of the S-UCED model. Section

3 provides a comprehensive description of the DACE-based approach used to solve the
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problem followed by presenting the numerical results in Section 4. Finally, we conclude the

paper in Section 5 with a brief discussion on future trends.

2 Problem Formulation

In this section, we present the two-stage SP formulation for the combined S-UCED problem.

We first present the two components, viz., UC and ED, and then introduce the combined

form. For our purposes, we consider a power system with buses (nodes) denoted by B

and transmission lines denoted by L. We denote the subset of nodes that connect to loads

by D. Finally, we denote by G and R the sets of conventional and renewable generators,

respectively. We use T to denote the set of decision epochs within the problem horizon.

2.1 Unit Commitment

The UC problem formulation is based on Atakan et al. [2017]. For a generator g ∈ G,

we define the state decision variable xg,t. It takes a value of one if the generator remains

operational in time period t ∈ T , otherwise it takes a value of zero. Binary variables sg,t and

zg,t denote the generator start up and shut down variables, respectively. These variables

take a value of one if the generator is switched on (or off) in time period t ∈ T , and zero

otherwise. Using these variables, it is possible represent the transition of the generator

state in one period to the next on a network. With this perspective, the state transition is

captured by the following flow balance equation:

sg,t−1 + xg,t−1 = zg,t + xg,t ∀g ∈ G, t ∈ T . (1)

It is worthwhile to notice that the above relation ensures that the variables xg,t, sg,t and

zg,t cannot simultaneously be one or zero.

The common constraints incorporated in the UC problem capture the restrictions im-

posed by the underlying physics. The minimum downtime/uptime constraints enforce the
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requirement for a unit to stay on/off for a minimum amount of time. These are given by

t−1∑
i=t−UTg+1

sg,i ≤ xg,t ∀g ∈ G, t ∈ T , (2a)

t∑
i=t−DTg

sg,i ≤ 1− xg,t−DTg ∀g ∈ G, t ∈ T . (2b)

Here, UTg and DTg are the minimum uptime and downtime limits, respectively, that are

characteristic of a generator g. Constraint (2a) ensures that a remain-on generator could

have been turned on at most once in the previous UTg−1 time periods. Similarly, constraint

(2b) suggests that if a generator remains operational, it cannot be switched on again in the

current time period t or the next DTg time periods.

We define two different variables to capture the generation amount in the UC problem.

The first variable, denoted by G′g,t, captures the amount of generation beyond the mini-

mum capacity of an operational generator denoted by Cg. Since we consider a stochastic

setting, we may revise the generation amount determined in the UC stage during dispatch.

Furthermore, the committed generators can also act as spinning operating reserves to cover

the discrepancy between the forecast and actual renewable generation. The second variable

captures the maximum amount of generation that a generator can produce to cover for any

shortfall in renewable generation. We denote this variable as Gg,t. Typically, the power

system operators require a certain minimum amount of spinning reserves to be commit-

ted in the UC problem. We denote the required reserve amounts by ρt. These maximum

generation decision variable must satisfy∑
g∈G

Gg,t ≥
(∑
i∈D

Di,t −
∑
i∈R

Ği,t

)
+ ρt ∀t ∈ T (3)

where Ği,t is the forecast of renewable generation from i ∈ R and Di,t is the demand at

node i ∈ D. The parenthetical term on the right-hand of the inequality (3) is often referred

to as the net demand that represents the amount the generation expected to be met by the

conventional generation resources.

The maximum generation Gg,t and the generation amount G′g,t are related to the on

and off status of the generator through the following constraints:

Gg,t ≥ G′g,t + Cg(sg,t + xg,t) ∀g ∈ G, t ∈ T , (4a)

Gg,t ≤ Cg(sg,t + xg,t) + (Sg − Cg)zg,t+1 ∀g ∈ G, t ∈ T . (4b)
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In the above, Cg is the maximum generation capacity when g is operational, respectively.

Additionally, Sg and Sg, respectively denote the minimum capacity that a generator must

meet upon startup and before it is shutdown. The following demand constraints ensure the

expected net demand is met by the committed conventional generators and is presented as

follows: ∑
g∈G

(G′g,t + Cg(sg,t + xg,t)) ≥
(∑
i∈D

Di,t −
∑
i∈R

Ği,t

)
∀t ∈ T . (5)

Finally, the ramping constraints relate the generation amounts from one time period to

the next for all the committed conventional generators. These constraints are given by:

Gg,t −G′g,t−1 ≤ Sgsg,t + (Rg + Cg)xg,t ∀g ∈ G, t ∈ T , (6a)

G′g,t−1 −G′g,t ≤ (Sg − Cg)zg,t +Rgxg,t ∀g ∈ G, t ∈ T , (6b)

where Rg and Rg are the ramp up and ramp down limits. Constraint (6a) ensures that the

increase in the generation output of the remain-on generator is limited by Rg. On the other

hand, the generation of a generator that is switched on is bounded by Sg. The constraint

(6b) ensures that the decrease in generation of a remain-on generator is limited by the ramp

down limit Rg. The constraint also ensures that the generator that is switched off in time

period t does not generate more than Sg in the previous time period.

2.2 Economic Dispatch

In the ED model, the system responds to a realized demand and renewable generation

outcome by adapting actual generation levels of all generators committed in the UC solution.

While the UC model ensures that the generation and demand quantities are balanced at

a system-level, the ED problem incorporates a more detailed representation of the power

network. For this purpose, we additionally define variables for power flow on a line (i, j) ∈ L,

denoted p(i,j),t, and phase angle θi,t for a node i ∈ B for all time periods t ∈ T . In this stage,

the generation resources are adjusted to the prevailing conditions, which may be different

from the forecasts used in the day-ahead UC stage. The ED model that we present here is

based on Gangammanavar et al. [2015].

For generator g at each time period t, we assume that the hour-ahead generation cost

vg,t is a piece-wise linear convex function of the dispatch amounts. Variables for the load
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curtailment at demand node i, rlsit , and generation curtailment at generator g, rgsgt , at time

t are other components of the objective function given below.

min
∑
t∈T

(∑
g∈G

vg,t +
∑

g∈G∪R
dgsg r

gs
g,t +

∑
i∈D

dlsi r
ls
i,t

)
. (7)

Here, dgsg and dlsi are the shedding penalties for generator g and load at node i.

Since only committed generators are capable of generating within their capacities in the

ED problem, they must satisfy the following constraints:

Cg(xg,t + sg,t) ≤ Gg,t ≤ Cg(xg,t + sg,t) ∀g ∈ G, t ∈ T . (8)

Similar to the UC model, ramping constrains are imposed on generation as follows:

Gg,t −Gg,t−1 ≤ Sgsg,t +Rgxg,t ∀g ∈ G, t ∈ T , (9a)

Gg,t−1 −Gg,t ≤ Szg,t +Rgxg,t ∀g ∈ G, t ∈ T . (9b)

Notice that the variable Gg,t in ED is analogous to G′g,t + Cg in the UC model.

At each bus in the network, flow balance equations guarantee that the demand is satisfied

through the available generation or through power flows on lines connected to the bus. The

flow balance equations are presented below.

∑
j:(j,i)∈L

pji,t −
∑

j:(i,j)∈L

pij,t +
∑
j∈Gi

(
Gj,t − rgsj,t

)
+
∑
j∈Ri

(
Gj,t(ξ̃)− rgsj,t

)

=
∑
j∈Di

(
Dj,t − rlsj,t

)
∀i ∈ B, t ∈ T . (10)

In the above, we use Gi ⊆ G to denote the subset of generators that are connected to bus

i ∈ B. Similarly, Di ⊆ D and Ri ⊆ R denote the subset of loads and renewable generators

connected to bus i, respectively. In our model, we allow the excess generation (from both

conventional and renewable resources) to be shed and demand to be curtailed. The amount

of generation shed is captured by rgsg,t and demand curtailment by rlsj,t.

The power flow on a transmission line (i, j) ∈ L depends on the voltage set at the

connected buses i and j. These quantities (power flows and voltages) are complex number

that are connected through nonlinear relationships. In practice, a linear approximation that

ignores the imaginary (reactive) part of power flow and line losses is commonly employed.
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We adopt such a linear or direct current (DC) approximation of the power flows. These are

given by

pij,t =
ViVj
Xij

(θi,t − θj,t) ∀(i, j) ∈ L, t ∈ T , (11)

where Vi is the voltage magnitude at bus i and Xij is the reactance of line (i, j).

The power flows, the voltage angles, the generation shedding, and load curtailment

variables are bounded as follows:

pminij ≤ pij,t ≤ pmaxij ∀(i, j) ∈ L, t ∈ T , (12a)

θmini ≤ θi,t ≤ θmaxi ∀i ∈ B, t ∈ T , (12b)

0 ≤ rlsi,t ≤ Di,t ∀i ∈ D, t ∈ T , (12c)

0 ≤ rgsi,t ≤ Gi,t ∀i ∈ G ∪R, t ∈ T , (12d)

where θmin and θmax are the voltage angle limits and pmin and pmax are line capacity limits.

The generation cost is a piecewise affine function of the generation amounts. If there

are κmax
g pieces for a generator g ∈ G then we denote by cκg the coefficients and γκg the

breakpoints an individual piece κ = 1, . . . , κmax
g . The coefficients satisfy c1

g ≤ c2
g ≤ . . . ≤

cκ
max

g . The aggregate cost of generating Gg.t units is represented by the function Q̂(Gg,t).

These costs are incorporated in the model by using auxiliary variables vg,t. With these

definitions, we enforce the piecewise generation costs using the following constraints:

vg,t ≥ cκg (Gg,t − γκ−1
g ) + Q̂g(γ

κ−1
g )− Q̂(Cg) ∀g ∈ G, t ∈ T , κ = 1, . . . , κmax. (13)

The above ensures that the unit generation cost within interval [γκg , γ
κ+1
g ] is cκg .

2.3 Decomposed Multi-period Two-stage S-UCED Model

Using the UC and ED model components introduced in the previous subsection, we next

present the decomposed multi period two-stage S-UCED models. In this model the UC

problem constitutes the first stage and ED problem is the second stage. The two-stage

S-UCED is given as

min
∑
t∈T

(∑
g∈G

(
fSUg,t sg,t + fSDg,t zg,t + Q̂(Cg)(sg,t + xg,t)

))
+ E{h(x, s, z, ξ̃)} (UC)

s.t (1)− (6), (x, s, z) ∈ {0, 1}3|G||T |, (G′, G) ≥ 0,
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where,

h(x, s, z, ξ) = min
∑
t∈T

(∑
g∈G

vg,t +
∑

g∈G∪R
dgsg r

gs
g,t +

∑
i∈D

dlsi r
ls
i,t

)
(ED)

s.t (8)− (13).

For the purpose of illustrating our DACE solution, we use a following general two-stage

SP form with a mixed-binary first stage and a continuous recourse.

min f(u,v) := c(u,v) + E{Q(u, ξ̃)} (14a)

s.t (u,v) ∈ V := {(u,v) | A[u;v] = b} ⊆ Bm1 × Rn1
+ ,

where the uncertain demand and renewable generation is represented by ξ̃, and the recourse

function is the optimal value of the following problem:

Q(u, ξ) = min d(y, ξ) (14b)

s.t Wy = r(ξ)− Tu, y ∈ Rn2
+ .

In the above general form, we distinguish between the binary commitment decision vari-

ables, u, and continuous decision variables captured by v. The continuous decision vari-

ables, denoted by y, are determined adaptively after the realization ξ is revealed. We

assume that the random variable ξ̃ is defined over the probability space (Ξ,F , P ), where Ξ

is the sample space and corresponds to the set of random variable outcomes, F is the set of

outcomes in the sample space, and P is the probability measure function. Notice that the

two-stage SP form of S-UCED satisfies fixed and relatively complete recourse. The former

implies that the recourse matrix W is deterministic. The later implies that the second-stage

program is feasible for any first-stage decision (u,v) ∈ V and observation ξ ∈ Ξ. The feasi-

bility of the ED problem is attributed to the ability to shed excess generation and curtail

load (see (10) and the subsequent discussion). In S-UCED, notice that only the right-hand

side of the second-stage constraints have random elements (random demand and renewable

generation).

3 The DACE Approach

Figure 1a illustrates the DACE process for two-stage stochastic programming problems, as

proposed in Chen [2001], and Figure 1b shows an adapted version of this approach applied
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to the model in (14). The input and output of the algorithm in the DACE approach are

generally assumed to be numerical. In our case, the region of study in the first stage (14a)

is a binary space. To tackle the intractability of modeling over a high-dimensional binary

space, we introduce a numerical feature space to represent the commitment decisions and

allow an approximation using the MARS statistical model. Further, the design of experi-

ments (DoE) ideally desires an orthogonal space, which corresponds to no multicollinearity

in the feature space to enable causal modeling. Because the constraints in (14) directly

impose collinear structure, DoE is conducted over a more controllable space from which

the commitment decisions are derived and then used as input to the second stage opti-

mization problem to obtain feasible recourse values for Step 3 in Figure 1b. The resulting

MARS statistical model that estimates the expected recourse function can then be globally

optimized.

(a) DACE approach

procedure

(b) DACE approach

for S-UCED

Figure 1: The detailed steps of the DACE approach

3.1 Defining the Feature Space

In this section, we describe Step 1 of the flowchart in Figure 1b. For the DACE pro-

cess, the feature space must be appropriately specified to enable a good estimate of the

recourse function in Step 4. In our case, the most straightforward feature space consists
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of (xgt, sgt, zgt) for every unit g at time period t that satisfies the first stage constraints of

(14a). However, there are three concerns with employing the commitment decisions directly

as the DACE feature space. First, the original binary space is high-dimensional, involving

3|G||T | variables. Second, these features are binary, and while it is possible to conduct DoE

for a binary feature space, this will not enable a good approximation in Step 4. Finally,

as previously mentioned, the commitment decisions are collinear variables. This is specif-

ically noticeable in the state transition constraints (1) that link these variables and the

minimum downtime and uptime constraints (2). The inevitable multicollinearity of such a

large number of predictors renders a good DoE impossible and would result in an unstable

approximation model in Step 4 [Kutner et al., 2004, Ariyajunya et al., 2020]. To overcome

these challenges, we partition the day into time intervals denoted by I. For each interval

i ∈ I, we use Ti to denote its time periods. For any time interval i, we define a numeri-

cal input space by introducing nonnegative integer features lgi that capture the number of

time periods at which unit g remains on within that interval. The new commitment linking

feature space has |G||I| variables. These variables are mapped to the first-stage variable

space through the following constraint in the optimization model.

lgi =
∑
t∈Ti

xg,t ∀g ∈ G ∀i ∈ I. (15)

3.2 Generating the Experimental Design

This section details Step 2 of the flowchart in Figure 1b. In general, DoE requires specifi-

cation of the range on the feature space over which DoE is constructed. Given our feature

space defined by the commitment linking variables lgi, the challenge here is identifying a

reasonable range. Instead of directly constructing DoE over the lgi variables, the available

generator data can be utilized to identify the consecutive periods of uptime and down-

time. DoE is then used to sample hypothetical sequences of uptime and downtime for

each generator, and the commitment linking variables lgi can then be calculated based on

these sequences. Let the minimum length of consecutive periods required for generator g

to remain on and off be MinUTg and MinDTg, respectively. This definition is synonymous

with the definition of minimum uptime and downtime discussed in the UC problem. Sub-

sequently, let the maximum number of consecutive time periods that generator g requires
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to remain on and off be MaxUTg and MaxDTg, respectively over the course of the 24-hour

horizon.

For each generator g, we use MinUTg and MinDTg data to identify the maximum num-

ber of changes in the commitment status of each generator from remaining on to remaining

off and vice-versa. For instance, if MinUTg is two hours and MinDTg is one hour, then

there can be at most eight status changes in a 24-hour horizon, with at most four switch-on

or switch-off changes. We denote by Ωgto be the maximum number of switch on or switch

off status changes. Furthermore, we use ωg and ωg to denote random variables that corre-

spond to the uptime and downtime, respectively. The random variable ωg is defined over the

support [MinUTg,MaxUTg]. Similarly, ωg is defined over the support [MinDTg,MaxDTg].

Using these random variables, we can generate a sequence of 2× Ωg.

We simulate Ωg outcomes of ωg and ωg, and arrange them in an alternating order. We

refer to the resulting sequence as an observation. If {ωg,1, ωg,2, . . . , ωg,Ωg
} are the simulated

outcomes of ωg and {ωg,1, ωg,2, . . . , ωg,Ωg} are the outcomes of ωg, then an observation will

have the following form:

Og = (ωg,1, ωg,1, ωg,2, ωg,2, . . . , ωg,Ωg
, ωg,Ωg).

Notice that an observation is a realization of duration of uptime and downtime sequences

for a generator.

Given an observation, we can construct the features (UC decision vector) of (xg,t, sg,t, zg,t)

for the entire 24-hour horizon. If the generator remains on during a current time period t,

and is off in the next time period t+1, the unit must have been switched off at the beginning

Figure 2: Commitment status for generator 1 in a 24-hour period
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of period t+ 1; i.e., zg,t+1 = 1. We can obtain the switching on of the unit g denoted by sgt

in a similar manner. We capture this construction using a mapping φ which we illustrate

through an example. Consider the following observation Og = (2, 5, 12, 5, 0, 0). The feature

values are shown in Figure 2. Notice since ωg,1 = 2, the generator remains on for the first

two time periods and it’s switched off in the third time period; therefore, zg,3 = 1. Since

ωg,1 = 5, the generator remains off until t = 7. It is then switched on resulting in sg,7 = 1.

We use Latin hypercube sampling (LHS) design [McKay et al., 2000] to generate a set

of N observations. An experimental design is a matrix, with columns representing the

different dimensions of the design space and the rows representing the realized sequences.

Here, the dimension of the design space is 2
∑

g Ωg to accommodate both the observations

for all the generators. For our LHS design, we generated N observations (N rows in the

design matrix). The experimental design is standardized to a range of values between 0

and 1. For a column representing uptime for a specific generator, the value is scaled to its

support, i.e., [MinUTg,MaxUTg]. Similarly, if a column represents downtime, the value is

scaled to its support [MinDTg,MaxDTg]. Since we consider one-hour time steps, we round

the resulting realization to the nearest integer. We summarize these steps in Algorithm 1.

Algorithm 1: Experimental design with LHS

Input: Generator data MinUTg,MaxUTg,MinDTg,MaxDTg, Ωg for {g ∈ G}; the

number of observations, N .

for {g ∈ G} do
Step 1. Construct a LHS design with dimension 2Ωg; with interval [MinUTg,

MaxUTg], [MinDTg,MaxDTg] for random variables ωg and ωg, respectively; N

discritizations (levels).

for n = 1, ..., N do

Step 2. Construct observations Ong .

Step 3. Compute φ(Ong ) = (xngt, s
n
gt, z

n
gt).

Output: Features (UC desicions) for all generators and time periods.

It is necessary that the final sampled set of DoE points lie within the feasible region

of the first stage (14a). Namely, DoE points generated in Step 1 of Algorithm 1 should

result in enough operational (remain-on) time periods for each unit to meet the demand

and operating reserve requirements in the UC problem. In order to ensure that DoE
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points satisfy these constraints, we solve the following mean value problem which provides

optimistic solutions for the (14).

min
(u,v)∈V

f(u,v) := c>[u;v] +Q(u, ξ). (16)

The optimal objective function value of the mean value problem provides a lower bound

for the expected recourse value. Hence, we use the optimal commitment solutions of (16)

as a baseline for our DoE procedure to identify the conventional generators that always

remain on (i.e., xg,t = 1 for t ∈ T ). These values are fixed a priori to the DoE. Additional

approaches to address this challenge are worth a complete discussion and are recommended

as future work.

3.3 Approximating the Recourse Function

This section describes Step 3 and 4 of the DACE flowchart in Figure 1b. Once we simulate

the design points and map them to the commitment decision space of (x, s, z) in Step 2,

we solve the second stage problem (14b) to obtain the corresponding recourse values Q for

each observation n in Step 3.

To approximate the second stage problem, we use the MARS approximation to fit to

the recourse values in Step 4. The MARS model represents the relationships between

the expected recourse function and the commitment decisions. This statistical model is a

weighted sum of basis functions denoted by Bj(l) for the input variable l and can be of a

form of a constant, a univariate hinge function modeled as

b(l) = max{0,±(lgi − k)}, (17)

or a product of two or more univariate functions. Here, k is the knot at which the function

bends. In our case, we can write the j-th basis function as follows:

Bj(l) =

Mj∏
m=1

bm,j(l), (18)

where Mj is the number of univariate hinge functions bm,j . We can write the MARS model

for the expected recourse function accordingly:

Q̂(l) =
J∑
j=0

ajBj(l), (19)
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where aj is the coefficient of the j-th basis function.

3.4 Optimization of the Approximated S-UCED Model

The last step in the DACE approach is to optimize the resulting model, which consists of

the first stage cost function as well as the MARS approximation Q̂(l) for the second stage.

min f(u,v) := c>[u;v] + Q̂(l) (20)

s.t (u,v) ∈ V := {(u,v) | A[u;v] = b} ⊆ Bm1 × Rn1
+ ,

u = (x, s, z),

lgi =
∑
t∈Ti

xg,h ∀g ∈ G ∀i ∈ I.

It can be shown that if Q̂(l) is constructed using non-smooth and two-way interaction

truncated linear (TITL) form of the MARS function, it can be formulated as a mixed-

integer quadratic programming (MIQP) model and therefore, globally optimized. For a full

description of using MIQP to formulate Q̂(l), we refer the interested reader to Ju et al.

[2022].

3.5 Solution Quality Assessment

Let us revisit the S-UCED problem in (14). For computational tractability, the expectation

in the objective function is often replaced by a sample average computed using a set of

random scenarios Ξn′ ⊆ Ξ of demand and renewable generation. Here, n′ is the size of the

random sample. The resulting problem is the SAA of the S-UCED and is written as

fn′(u,v) = min
(u,v)∈V

{
c(u,v) +

1

n′

n′∑
i=1

Q(u, ξi)
}
. (21)

We denote the optimal value of the true 2-SP and the SAA by a∗ and a∗n′ , respectively.

Since the sample is generated randomly, the resulting solutions and values are stochastic

in nature. Therefore, it is necessary to assess the quality of the solutions obtained from the

optimization process. Mak et al. [1999] introduced a multiple replication-based procedure

for assessing the quality of solutions obtained from the a sampling-based approach. In an

M -replicated procedure, we generate M samples of independent identically distributed (iid)
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observations {ξm1 , ξm2 , ..., ξmn′}, each of size n′. We construct and solve (21) to obtain a∗,mn′

and (u∗,mn′ ,v
∗,m
n′ ). An estimate of E{a∗n′} which is a lower bound for the true optimal value

a∗ can be estimated by Ln′ , given by

Ln′ =
1

M

M∑
m=1

a∗,mn′ . (22)

The upper bound, E{f(û, v̂)} with a suboptimal solution (û, v̂), can be estimated using

an evaluation sample of size n′′ iid observations {ξm1 , ξm2 , ..., ξmn′′} simulated independently

of the optimization set of n′ scenarios. In particular, for u∗,mn′ ,v
∗,m
n′ at the m-th replication

we have

Umn′′ = c(u∗,mn′ ,v
∗,m
n′ ) +

1

n′′

n′′∑
i=1

Q(u∗,mn′ ,v
∗,m
n′ , ξ

m
j ). (23)

It is preferred that the evaluation sample size be significantly higher than the optimization

sample size, i.e, n′′ � n′. For M replications, the upper bound estimate can be immediately

computed as

Un′′ =
1

M

M∑
m=1

Umn′′ . (24)

Let σ2
L and σ2

U be the standard sample variance of Ln′ and Un′′ , respectively. We

can compute a (1 − α)-confidence interval (CI) on the lower bound and the upper bound

estimates as:

CIL =
[
Ln′ ±

ζa/2σL√
M

]
; CIU =

[
Un′′ ±

ζa/2σU√
M

]
, (25)

where ζa/2 is the (1− a/2) quantile of the standard normal distribution. We can define the

worst-case optimality gap, which we refer to as the pessimistic gap, as the difference between

the upper end of CIU and the lower end of the CIL. If the pessimistic gap is acceptably

smaller than a threshold, then the SAA procedure is terminated with a statistical guarantee

on the optimal objective value.

4 Numerical Results

For our case study, we conduct experiments on a modified IEEE118 bus system. This test

system has 54 generators of which 36 are conventional, and the remaining 18 are renewable
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Figure 3: Power at solar generators vs time

(wind and solar) generators. The scenarios of wind and solar generation are based on a

sample of size n = 1000 simulated in the R platform using a time series model. The LHS

algorithm as well as fitting the MARS model are also performed in R. The optimization

procedures are conducted on a C/C++ platform with CPLEX 12.9 as the solver on a

Linux-based server with a processor of 64 GB RAM.

The original x space contains 2592 features, which represent the 36 conventional gen-

erators over the 24-hour planning horizon. For the dimension of the l variables, we observe

the patterns at the energy output of the simulated time series for different renewable gener-

ators that have a direct impact on whether conventional generators have to be operational

or renewable units are adequate to meet the demand at that certain time period t. As il-

lustrated in Figure 3, solar power forecasts demonstrate a pattern of zero from time period

t = 1 to t = 7. The peak of solar power is shown to be between t = 8 and t = 17 and

finally from t = 18 to t = 24, we observe zero power once more. Based on these patterns,

we set I = 3 at different time lengths of |T1| = 7, |T2| = 10 and |T3| = 7 for each generator

g. This results in 108 features for the l space. Specifically, the dimensionality reduction

procedure allows the implementation of the LHS algorithm on 108 features instead of the

original 2592 decision values.
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4.1 DoE Procedure

In order to implement Algorithm 1, we consider 2 × Ωg = 6 as the overall number of

remain-on and remain-off time periods.

For the commitment linking space with 108 features, we initially consider n = 300

observations in the DoE process. Eliminating the observations that represented infeasible

first-stage solutions leaves us with 205 feasible design points. Once the sampled commitment

decisions are obtained via the experimental design, we conduct the experiments in the

following sections with M = 30 replicated scenarios of sample size n′ = 1000.

4.2 Optimization of the Expected Recourse Function

The second-stage problem (14b) is solved using n′ = 1000 generated random scenarios using

the 205 sampled design points as first-stage solutions. The expected recourse function is

estimated to be the average of the second-stage recourse value over these scenarios.

4.3 MARS Models

We use the earth package in R to conduct the MARS algorithm in order to predict the

expected recourse function. In our procedure, we observe that the replications merely

differ in the interaction terms and not the main effects. Figure 4 illustrates the number of

interaction terms for the 30 replicated MARS models. While the average R-squared remains

around 0.98 across the replications, the number of interaction terms varies between 13 and

Figure 4: Number of interaction terms for 30 replicated MARS models
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19. The MARS procedure automatically chooses which variables are the most important

ones to use, the positions of the knots in the hinge functions, and how the univariate hinge

functions are combined.

These 30 MARS models help us gain information about how the committed generators

impact the operating costs as raised in the contribution. In particular, Figure 5 captures

the solutions predicted by the first replicated MARS model at different time periods in

the 24-hour horizon. This Figure suggests that a lot of the conventional generators remain

offline in the second part of the day (T2) in the presence of renewable energy and online in

(a) Conventional generator operational time for T1

(b) Conventional generator operational time for T2

(c) Conventional generator operational time for T3

Figure 5: Operational status of the conventional generators for replication 1 in the three

time parts of the day
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the first and third parts of the day (T1 and T3) to compensate for the absence of renewable

generation as seen previously in Figure 3 for the same replication. Let us consider generator

25 as an example. For this particular generator, the interaction terms of the first replicated

MARS model have the following form:

1167.52 ∗max(0, 6− l7,2) ∗max(0, 5− l25,3)+

1464.66 ∗max(0, l7,2 − 6) ∗max(0, 5− l25,3)

Moreover, Figure 6 depicts the univariate terms for variables l7,3 and l25,3 with knots

at k = 6 and k = 5, respectively. Since the objective of the second stage is to minimize the

ED problem, the recourse function would be minimized with generators 7 and 25 remaining

offline in the third part of the day as shown in the univariate terms in Figure 6. However,

in order to fulfill the demand in the second part of day, generator 7 should remain online

(a) Univariate hinge function for generator 7 at T3

(b) Univariate hinge function for generator 25 at T3

Figure 6: The univariate terms of generators 7 and 25 in the third part of the day
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since the demand decreases as its number of remaining online time periods increases. This

is indicated in the first interaction term. However, due to its minimum uptime as well

as the shedding penalty restrictions, this generator cannot remain online for more than

6 consecutive time periods. While having generator 25 online for more than 5 hours will

reduce the interaction terms, it will increase the expected cost of shedding in the third part

of the day due to the large coefficients of the univariate terms. For the plots of the two-way

interaction terms at this particular replication, we refer the reader to Appendix A.

4.4 Optimization of the S-UCED Model

Once we obtain the predicted recourse function, we can set Q̂ as an approximation to the

second stage problem (14b) and alternatively solve (20). Across M = 30 replications, we

use the resulting optimal solutions as an input to solve the original S-UCED model using

(21). This is our lower bound estimate, which we refer to it as the predicted value.

Since (21) has finite support, we can use the L-shaped method to solve the SAA problem.

We use the results as a basis of comparison for our DACE-based approach. The SAA

instance is solved using a sample size of n′ = 1000 across the M replicated scenarios

terminated at ε = 0.05 as the optimality gap. This gap is defined as the difference between

the in-sample upper and lower bound within the acceptable tolerance of 0.05 in the L-shaped

optimization process. The results of solving the IEEE118 instance with the two methods

are summarized in Table 1. This table presents the estimates for the lower bound, Ln′ , for

n′ = 1000, and the out-of-sample bound, Un′′ , which we refer to as the validated value for

n′′ = 10, 000 along with their standard deviations. Notice that the DACE approach presents

a lower objective value than the optimal value using the L-shaped method reported within

5% of optimality. In addition, the solutions obtained from the DACE approach show lower

variability compared to the L-shaped solutions. This can be attributed to the fact that

the replicated MARS models have low sensitivity toward the 30 replicated scenario sets

differing only in the interaction terms as demonstrated in Figure 4. The last column of

Table 1 shows the average computational time. This time includes the overall time of

executing the steps of the two methods. Notice that the DACE approach significantly

reduces the overall computational time compared to the L-shaped method. Moreover, the

DACE approach provides more reliable validation results.

23



Algorithm Predicted value (Ln′) Validated value (Un′′) Avg. time (H:M:S)

(std.dev.) (std.dev.) (std.dev.)

DACE $ 20,450,610.52 (11,036.67) $ 20,433,886.61 (11,086.58) 0:19:37.29 (0:0:7.22)

L-shaped $ 20,500,531.22 (30,572.14) $ 20,681,876.84 (95,981.80) 6:25:42.25 (5:2:15.84)

Table 1: Results from DACE vs. L-shaped for IEEE118

We report the time results for each step of the DACE and L-shaped procedures in Table

2. Note that in the L-shaped method, solving the subproblems accounts for a considerable

portion of the computational time. However, this number decreases significantly when

fixing the first stage solutions using our experimental design approach to solve the recourse

functions across the DoE points in the DACE procedure.

Step Description Avg time (H:M:S) (std.dev.)

DACE

1 Generate LHS using Algorithm 1 0:0:22.21 (0:0:0.00)

2 Generate recourse function values 0:19:13.51(0:0:7.21)

3 Fit a MARS approximation 0:0:0.82 (0:0:0.07)

4 Optimization to obtain the first stage solution 0:0:0.76 (0:0:0.07)

L-shaped

1 Optimization of the Subproblems 5:48:16.96 (4:24:54.67)

2 Optimization of the Master problem 0:32:45.63 (0:35:15.34)

Table 2: Computational Time for the DACE and L-shaped procedures

As depicted in Figure 7, the mean differences of the out-of-sample estimate for the

L-shaped method show that the total validated costs can be as high as $20.92 million.

However, while demonstrating less variability across the 30 replicated values, the DACE

approach suggests that the total validated costs can be at most $20.46 million.
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Figure 7: Mean differences of out-of-sample estimate for DACE vs Lshaped

5 Concluding Remarks and Future Work

In this paper, we presented the first application of a DACE-based statistical approach to

optimize the S-UCED with uncertainties in renewable generation. We proposed a creative

experimental design sampling specifically developed to simulate the first stage decisions and

solve the second stage continuous recourse values. We presented a MARS approximation

to predict the second-stage recourse function. This approach demonstrates great efficiency

in approximating complex functions within optimization. In particular, the computational

results on a large-scale (IEEE118) test system verify the significant computational improve-

ment over the conventional L-shaped method where we use a multiple replication procedure

to assess the quality of our stochastic solutions obtained from both methods. In addition,

as a result of the significant reduction in the computational time of optimizing the SP

model, this approach can be used as an alternative method to solve SP problems arising

in power systems planning and operations applications within the common dedicated time

frame considered in the electricity market. Future work will address additional approaches

to tackle the challenge of generating DoE points that violate the valid inequalities in the UC

model. The efficient optimization of the MARS approximation with enforced convexity and
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using derivatives of the MARS function to generate cuts are also topics of future research.

Utilizing SAA in the optimization process necessitates the selection of the samples a

priori. Since one subproblem is solved for each scenario, their relative performance is

often problem-dependent. This often results in an increase in the computational time

by increasing the sample size. Sequential sampling algorithms such as the SD method

[Higle and Sen, 1991] have been prevalent in tackling this issue. SD uses a sequence of

approximations built by introducing new scenarios in every iteration. However, the SD

method cannot handle discrete variables in the first stage. A development of a customized

SD method is a subject for future work. Other approaches such as a decomposition method

across scenarios in addition to the time periods can provide more information about the

status of the generator when solving problems with varying scenarios. In our future research,

we will investigate improvements to address these challenges in solving S-UCED models.
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A MARS Interaction Terms

Each graph in Figure 8 shows the interaction terms in the MARS model between two

predictor variables at different periods of the day. For example, we observe the predicted

value of Q, as l27,2 and l27,3 vary, with other variables fixed at their median values.

Figure 8: Interaction terms in the MARS model
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